31 research outputs found

    A Comprehensive Survey on Exiting Solution Approaches towards Security and Privacy Requirements of IoT

    Get PDF
    ‘Internet of Things (IoT)’emerged as an intelligent collaborative computation and communication between a set of objects capable of providing on-demand services to other objects anytime anywhere. A large-scale deployment of data-driven cloud applications as well as automated physical things such as embed electronics, software, sensors and network connectivity enables a joint ubiquitous and pervasive internet-based computing systems well capable of interacting with each other in an IoT. IoT, a well-known term and a growing trend in IT arena certainly bring a highly connected global network structure providing a lot of beneficial aspects to a user regarding business productivity, lifestyle improvement, government efficiency, etc. It also generates enormous heterogeneous and homogeneous data needed to be analyzed properly to get insight into valuable information. However, adoption of this new reality (i.e., IoT) by integrating it with the internet invites a certain challenges from security and privacy perspective. At present, a much effort has been put towards strengthening the security system in IoT still not yet found optimal solutions towards current security flaws. Therefore, the prime aim of this study is to investigate the qualitative aspects of the conventional security solution approaches in IoT. It also extracts some open research problems that could affect the future research track of IoT arena

    Provision of adaptive and context-aware service discovery for the Internet of Things

    Get PDF
    The IoT concept has revolutionised the vision of the future Internet with the advent of standards such as 6LoWPAN making it feasible to extend the Internet into previously isolated environments, e.g., WSNs. The abstraction of resources as services, has opened these environments to a new plethora of potential applications. Moreover, the web service paradigm can be used to provide interoperability by offering a standard interface to interact with these services to enable WoT paradigm. However, these networks pose many challenges, in terms of limited resources, that make the adaptability of existing IP-based solutions infeasible. As traditional service discovery and selection solutions demand heavy communication and use bulky formats, which are unsuitable for these resource-constrained devices incorporating sleep cycles to save energy. Even a registry based approach exhibits burdensome traffic in maintaining the availability status of the devices. The feasible solution for service discovery and selection is instrumental to enable the wide application coverage of these networks in the future. This research project proposes, TRENDY, a new compact and adaptive registry-based SDP with context awareness for the IoT, with more emphasis given to constrained networks, e.g., 6LoWPAN It uses CoAP-based light-weight and RESTful web services to provide standard interoperable interfaces, which can be easily translated from HTTP. TRENDY's service selection mechanism collects and intelligently uses the context information to select appropriate services for user applications based on the available context information of users and services. In addition, TRENDY introduces an adaptive timer algorithm to minimise control overhead for status maintenance, which also reduces energy consumption. Its context-aware grouping technique divides the network at the application layer, by creating location-based groups. This grouping of nodes localises the control overhead and provides the base for service composition, localised aggregation and processing of data. Different grouping roles enable the resource-awareness by offering profiles with varied responsibilities, where high capability devices can implement powerful profiles to share the load of other low capability devices. Thus, it allows the productive usage of network resources. Furthermore, this research project proposes APPUB, an adaptive caching technique, that has the following benefits: it allows service hosts to share their load with the resource directory and also decreases the service invocation delay. The performance of TRENDY and its mechanisms is evaluated using an extensive number of experiments performed using emulated Tmote sky nodes in the COOJA environment. The analysis of the results validates the benefit of performance gain for all techniques. The service selection and APPUB mechanisms improve the service invocation delay considerably that, consequently, reduces the traffic in the network. The timer technique consistently achieved the lowest control overhead, which eventually decreased the energy consumption of the nodes to prolong the network lifetime. Moreover, the low traffic in dense networks decreases the service invocations delay, and makes the solution more scalable. The grouping mechanism localises the traffic, which increases the energy efficiency while improving the scalability. In summary, the experiments demonstrate the benefit of using TRENDY and its techniques in terms of increased energy efficiency and network lifetime, reduced control overhead, better scalability and optimised service invocation time

    Building blocks for the internet of things

    Get PDF

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    An interoperability framework for pervasive computing systems

    Full text link
    Communication and interaction between smart devices is the foundation for pervasive computing and the Internet of Things. Pervasive platforms, that support developers in building new services and applications, have been extensively researched in the past. Nowadays, a multitude of heterogeneous pervasive platforms exist. In real-world deployments, this leads to the formation of platform-specific silos. Therefore, the need for interoperability between such platforms arises. This thesis presents a framework which addresses all elaborated issues preventing co-operation between different platforms and allows for extension and customisation of different aspects, including platforms and transformation mechanisms. The framework bases on uniform abstractions that support translations of different features. The transformation model provides an automatic as well as a manual transformation mechanism. For evaluation, a prototype is implemented and assessed, providing support for six distinct platforms. Particularly, the framework’s feasibility is demonstrated with three realistic scenario implementations, an effort evaluation, and a cost evaluation

    D7.5 FIRST consolidated project results

    Get PDF
    The FIRST project commenced in January 2017 and concluded in December 2022, including a 24-month suspension period due to the COVID-19 pandemic. Throughout the project, we successfully delivered seven technical reports, conducted three workshops on Key Enabling Technologies for Digital Factories in conjunction with CAiSE (in 2019, 2020, and 2022), produced a number of PhD theses, and published over 56 papers (and numbers of summitted journal papers). The purpose of this deliverable is to provide an updated account of the findings from our previous deliverables and publications. It involves compiling the original deliverables with necessary revisions to accurately reflect the final scientific outcomes of the project

    Pervasive computing reference architecture from a software engineering perspective (PervCompRA-SE)

    Get PDF
    Pervasive computing (PervComp) is one of the most challenging research topics nowadays. Its complexity exceeds the outdated main frame and client-server computation models. Its systems are highly volatile, mobile, and resource-limited ones that stream a lot of data from different sensors. In spite of these challenges, it entails, by default, a lengthy list of desired quality features like context sensitivity, adaptable behavior, concurrency, service omnipresence, and invisibility. Fortunately, the device manufacturers improved the enabling technology, such as sensors, network bandwidth, and batteries to pave the road for pervasive systems with high capabilities. On the other hand, this domain area has gained an enormous amount of attention from researchers ever since it was first introduced in the early 90s of the last century. Yet, they are still classified as visionary systems that are expected to be woven into people’s daily lives. At present, PervComp systems still have no unified architecture, have limited scope of context-sensitivity and adaptability, and many essential quality features are insufficiently addressed in PervComp architectures. The reference architecture (RA) that we called (PervCompRA-SE) in this research, provides solutions for these problems by providing a comprehensive and innovative pair of business and technical architectural reference models. Both models were based on deep analytical activities and were evaluated using different qualitative and quantitative methods. In this thesis we surveyed a wide range of research projects in PervComp in various subdomain areas to specify our methodological approach and identify the quality features in the PervComp domain that are most commonly found in these areas. It presented a novice approach that utilizes theories from sociology, psychology, and process engineering. The thesis analyzed the business and architectural problems in two separate chapters covering the business reference architecture (BRA) and the technical reference architecture (TRA). The solutions for these problems were introduced also in the BRA and TRA chapters. We devised an associated comprehensive ontology with semantic meanings and measurement scales. Both the BRA and TRA were validated throughout the course of research work and evaluated as whole using traceability, benchmark, survey, and simulation methods. The thesis introduces a new reference architecture in the PervComp domain which was developed using a novel requirements engineering method. It also introduces a novel statistical method for tradeoff analysis and conflict resolution between the requirements. The adaptation of the activity theory, human perception theory and process re-engineering methods to develop the BRA and the TRA proved to be very successful. Our approach to reuse the ontological dictionary to monitor the system performance was also innovative. Finally, the thesis evaluation methods represent a role model for researchers on how to use both qualitative and quantitative methods to evaluate a reference architecture. Our results show that the requirements engineering process along with the trade-off analysis were very important to deliver the PervCompRA-SE. We discovered that the invisibility feature, which was one of the envisioned quality features for the PervComp, is demolished and that the qualitative evaluation methods were just as important as the quantitative evaluation methods in order to recognize the overall quality of the RA by machines as well as by human beings

    Service architecting and dynamic composition in pervasive smart ecosystems for the Internet of things based on sensor network technology

    Get PDF
    Why pervasive awareness and Ambient Intelligence are perceived by a great part of the academia and industry as a massive revolution in the short-term? In our best knowledge, a cornerstone of this thought is based on the fact that the ultimate nature of the smart environment paradigm is not in the technology itself, but on a people-centered approach. Perhaps, is in this apparently simple conception where precisely lies the boldness of this promising vision, which has been consolidated in recent years with the emerging proliferation of mobile, personal, portable, wearable and sensory computing: to reach everyone and everywhere. On the one hand, it touches our daily lives in a close manner, minimizing the required attention from the users, anticipating to their needs with the main intention of redefining our idea of Quality of Experience. On the other hand, this new wave impacts everywhere at both global and personal scales allowing expanded connectivity between devices and smart objects, in a dynamic and ubiquitous manner, as a natural extension of the physical world around us. According to the above, this doctoral dissertation focuses on contributing to the integration of software and networking engineering advances in the field of pervasive smart spaces and environment using sensor networks. This is founded on the convergence of some information technology and computer science paradigms, such as service and agent orientation, semantic technologies and knowledge management in the framework of pervasive computing and the Internet of Things. To this end, the nSOM (nano Service-Oriented Middleware) and nSOL (nano Semantics-Oriented Language) approaches are presented. Firstly, the nSOM proposal defines a service-oriented platform for the implementation, deployment and exposure of agent-based in-network services to the Internet cloud on heterogeneous sensor devices. Secondly, the nSOL solution enables an abstraction for supporting ubiquitous service composition based on semantic knowledge management. The integration of both contributions leads to the formal modelling and practical development of adaptive virtual sensor services for pervasive Ambient Intelligence ecosystems. This work includes also the related performance characterization of the resulting prototype according to several metrics such as code size, volatile memory footprint, CPU overhead, service time delay and battery lifetime. Main foundations and outcomes presented in this essay are contextualized in the following European Research Projects: μSWN (FP6 code: IST-034642), DiYSE (ITEA2 code: 08005) and LifeWear (ITEA2 code: 09026). --------------------¿Por qué la sensibilidad ubicua y la inteligencia ambiental son percibidas por una gran parte de las comunidades académica e industrial como una revolución masiva en el corto plazo? En nuestra opinión, una piedra angular de este pensamiento es el hecho de que la naturaleza última del paradigma de entornos inteligentes no reside en la tecnología en sí misma, sino en una aproximación centrada en las personas. Y es quizá en esta aparente simple concepción donde se halla precisamente el atrevimiento de esta prometedora visión, consolidada en los últimos años con la emergente proliferación de la computación móvil, personal, portable, llevable y sensorial: llegar a todos y a todas partes. Por un lado, esta alcanza nuestras vidas de una manera cercana, minimizando la atención requerida por los usuarios, anticipándose a sus necesidades con el objetivo de redefinir nuestra idea de calidad de experiencia. Por otro lado, esta impacta en todas partes tanto a escala global como personal, con una conectividad expandida entre dispositivos y objetos inteligentes, de un modo ubicuo y dinámico, como una extensión natural del mundo que nos rodea. Conforme a lo anterior, esta tesis doctoral se centra en contribuir en la integración de los avances de ingeniería de redes y software en el ámbito de los espacios y entornos inteligentes ubicuos basados en redes de sensores. Esto se fundamenta en la convergencia de diversos paradigmas de las tecnologías de la información y ciencia de la computación, tales como orientación a servicios y agentes, tecnologías semánticas y de gestión del conocimiento en el contento de la computación ubicua en la Internet de las Cosas. Para este fin, se presentan las aproximaciones nSOM (nano Service-Oriented Middleware) y nSOL (nano Semantics-Oriented Language). En primer lugar, nSOM define una plataforma orientada a servicios para la implementación, despliegue y exposición a la nube de servicios basados en agentes e implementados en red sobre dispositivos heterogéneos de sensores. En segundo lugar, nSOL habilita una abstracción para proporcionar composición ubicua de servicios basada en gestión semántica del conocimiento. La integración de ambas contribuciones conduce a un modelado formal y de implementación práctica de servicios de sensor virtual adaptativos para ecosistemas de inteligencia ambiental. Este trabajo incluye la caracterización del rendimiento del prototipo resultante, basándonos para ello en métricas tales como tamaño de código, tamaño de memoria volátil, sobrecarga de procesamiento, retardo en tiempo de servicio y autonomía de baterías. Los principales fundamentos y resultados discutidos en este ensayo están contextualizados en los siguientes Proyectos de Investigación Europeos: μSWN (FP6 código: IST-034642), DiYSE (ITEA2 código: 08005) y LifeWear (ITEA2 código: 09026).Presidente: Juan Ramón Velasco Pérez; Vocal: Juan Carlos Dueñas; Secretario: Mario Muñoz Organer

    Architectural model for Collaboration in The Internet of Things : a Fog Computing based approach

    Get PDF
    Through sensors, actuators and other Internet-connected devices, applications and services are becoming able to perceive and react on the real world. Seamlessly integrating people, and devices is no longer a futuristic idea. Converging the physical world with the human-made realm into one network is rather a present and promising approach called The Internet of Things (IoT). A closer look at the phenomenon of IoT reveals many problems. The current trends are focusing on Cloud-centric approaches to deal with the heterogeneity and the scale of this network. The blessing of the Cloud computing becomes, however, a burden on latency-sensitive applications, which require processing and storage mechanisms in their proximity to meet low-latency, location and better context-awareness requirements. In addition to mobility support and high geographical distribution requirements. Fog computing is a new concept that focuses on extending the Cloud paradigm to the edge of the Internet of Things, via providing communication, computing, and access management support. This research project foresees and is driven by the promising opportunities of the concept behind Fog computing. In this thesis, we leverage this new concept by delivering a Collaboration Architecture for the Fog computing. This architecture constitutes a referential model to better design and to implement Fog platforms. It powers the freedom of abstraction to make development and deployment at the Fog nodes easier and more efficient. Moreover, it provides a nest where IoT-connected objects can interact and collaborate. To this end, we introduce expressive mechanisms to define and abstract objects, data analytics, and services. To leverage Fog nodes with dynamic services and service-based collaboration, we propose the concept of Operation: a formal way to dynamically generate new services through mechanisms such as aggregation, composition, and transformation. Finally, we deliver a comprehensive study and a collaboration-oriented access control model for the proposed architecture. Dans les dernières années, les avantages du Cloud Computing l’ont mis au cœur des architectures proposées pour l’Internet des Objets (IoT). L’infrastructure homogène, prédictible et performante a fait du Cloud une solution adéquate pour le traitement et l’analyse des données en provenance des objets de l’IoT. Cependant, les avantages de l’utilisation du Cloud se révèlent problématiques pour les systèmes IoT sensibles au temps de latence, et qui exigent la distribution géographique, la prise en compte de l’environnement local ainsi que la mobilité des objets. Le Fog Computing est un nouveau concept visant l'extension du Cloud vers la périphérie de l’IoT. Ainsi, il envisage une couche de nœuds (Fogs) permettant de fournir aux objets connectés un support à la gestion de la communication, à la persistance des données et à la gestion d’accès. Ce projet de recherche est motivé par les opportunités prometteuses du concept du Fog computing. Il anticipe ces opportunités et vise à proposer une architecture fédératrice, jusqu’à présent inexistante, pour la collaboration dans le Fog. De ce fait, dans cette thèse, nous tirons parti de l'idée derrière ce nouveau concept afin de proposer une architecture à cette fin. Cette architecture consiste en un modèle référentiel qui promeut à la fois une grande abstraction dans la conception des applications, ainsi que la facilité et l'efficacité dans le développement et le déploiement au niveau des nœuds de la couche du Fog. En effet, pour renforcer ces nœuds avec des services dynamiques, nous proposons des moyens formels pour la génération dynamique de nouveaux services à travers des opérations d'agrégations, de compositions ou de transformations. En conséquence, les nœuds du Fog deviennent un nid où les objets connectés peuvent interagir et collaborer à travers des mécanismes expressifs de définition et d'abstraction d’objets, des analyses de données et des services

    Socially-aware congestion control in ad-hoc networks: Current status and the way forward

    Get PDF
    Ad-hoc social networks (ASNETs) represent a special type of traditional ad-hoc network in whicha user’s social properties (such as the social connections and communications metadata as wellas application data) are leveraged for offering enhanced services in a distributed infrastructurelessenvironments. However, the wireless medium, due to limited bandwidth, can easily suffer from theproblem of congestion when social metadata and application data are exchanged among nodes—a problem that is compounded by the fact that some nodes may act selfishly and not share itsresources. While a number of congestion control schemes have been proposed for the traditional ad-hoc networks, there has been limited focus on incorporating social awareness into congestion controlschemes. We revisit the existing traditional ad-hoc congestion control and data distribution protocolsand motivate the need for embedding social awareness into these protocols to improve performance.We report that although some work is available in opportunistic network that uses socially-awaretechniques to control the congestion issue, this area is largely unexplored and warrants more researchattention. In this regards, we highlight the current research progress and identify multiple futuredirections of research
    corecore