61 research outputs found

    Autonomic State Management for Optimistic Simulation Platforms

    Get PDF
    We present the design and implementation of an autonomic state manager (ASM) tailored for integration within optimistic parallel discrete event simulation (PDES) environments based on the C programming language and the executable and linkable format (ELF), and developed for execution on x8664 architectures. With ASM, the state of any logical process (LP), namely the individual (concurrent) simulation unit being part of the simulation model, is allowed to be scattered on dynamically allocated memory chunks managed via standard API (e.g., malloc/free). Also, the application programmer is not required to provide any serialization/deserialization module in order to take a checkpoint of the LP state, or to restore it in case a causality error occurs during the optimistic run, or to provide indications on which portions of the state are updated by event processing, so to allow incremental checkpointing. All these tasks are handled by ASM in a fully transparent manner via (A) runtime identification (with chunk-level granularity) of the memory map associated with the LP state, and (B) runtime tracking of the memory updates occurring within chunks belonging to the dynamic memory map. The co-existence of the incremental and non-incremental log/restore modes is achieved via dual versions of the same application code, transparently generated by ASM via compile/link time facilities. Also, the dynamic selection of the best suited log/restore mode is actuated by ASM on the basis of an innovative modeling/optimization approach which takes into account stability of each operating mode with respect to variations of the model/environmental execution parameters

    A fine-grain time-sharing Time Warp system

    Get PDF
    Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) synchronization protocol already allow for exploiting parallelism, several techniques have been proposed to further favor performance. Among them we can mention optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors leading to waste of computation. However, in state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibility to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform, which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and two real world models is presented, which shows how our proposal effectively leads to the reduction of the incidence of causality errors, as compared to traditional Time Warp, especially when running with higher degrees of parallelism

    A new approach to reversible computing with applications to speculative parallel simulation

    Get PDF
    In this thesis, we propose an innovative approach to reversible computing that shifts the focus from the operations to the memory outcome of a generic program. This choice allows us to overcome some typical challenges of "plain" reversible computing. Our methodology is to instrument a generic application with the help of an instrumentation tool, namely Hijacker, which we have redesigned and developed for the purpose. Through compile-time instrumentation, we enhance the program's code to keep track of the memory trace it produces until the end. Regardless of the complexity behind the generation of each computational step of the program, we can build inverse machine instructions just by inspecting the instruction that is attempting to write some value to memory. Therefore from this information, we craft an ad-hoc instruction that conveys this old value and the knowledge of where to replace it. This instruction will become part of a more comprehensive structure, namely the reverse window. Through this structure, we have sufficient information to cancel all the updates done by the generic program during its execution. In this writing, we will discuss the structure of the reverse window, as the building block for the whole reversing framework we designed and finally realized. Albeit we settle our solution in the specific context of the parallel discrete event simulation (PDES) adopting the Time Warp synchronization protocol, this framework paves the way for further general-purpose development and employment. We also present two additional innovative contributions coming from our innovative reversibility approach, both of them still embrace traditional state saving-based rollback strategy. The first contribution aims to harness the advantages of both the possible approaches. We implement the rollback operation combining state saving together with our reversible support through a mathematical model. This model enables the system to choose in autonomicity the best rollback strategy, by the mutable runtime dynamics of programs. The second contribution explores an orthogonal direction, still related to reversible computing aspects. In particular, we will address the problem of reversing shared libraries. Indeed, leading from their nature, shared objects are visible to the whole system and so does every possible external modification of their code. As a consequence, it is not possible to instrument them without affecting other unaware applications. We propose a different method to deal with the instrumentation of shared objects. All our innovative proposals have been assessed using the last generation of the open source ROOT-Sim PDES platform, where we integrated our solutions. ROOT-Sim is a C-based package implementing a general purpose simulation environment based on the Time Warp synchronization protocol

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Design and evaluation of the rollback chip: special purpose hardware for time warp

    Get PDF
    technical reportThe Time Warp mechanism offers an elegant approach to attacking difficult clock synchronization problems that arise in applications such as parallel discrete event simulation. However, because Time Warp relies on a lookahead and rollback mechanism to achieve widespread exploitation of parallelism, the state of each process must periodically be saved. Existing approaches to implementing state saving and rollback are not appropriate for large Time Warp programs. We propose a component called the rollback chip (RBC) to efficiently implement these functions. Such a component could be used in a programmable, special purpose parallel discrete event simulation engine based on Time Warp. The algorithms implemented by the rollback chip are described, as well as mechanisms that allow efficient implementation. Results of simulation studies are presented that show that the rollback chip can virtually eliminate the state saving and rollback overheads that plague current software implementations of Time Warp. Index terms ? state saving, rollback, Time Warp, parallel discrete event simulation, VLSI component, special purpose computers

    Parallel simulation techniques for telecommunication network modelling

    Get PDF
    In this thesis, we consider the application of parallel simulation to the performance modelling of telecommunication networks. A largely automated approach was first explored using a parallelizing compiler to speed up the simulation of simple models of circuit-switched networks. This yielded reasonable results for relatively little effort compared with other approaches. However, more complex simulation models of packet- and cell-based telecommunication networks, requiring the use of discrete event techniques, need an alternative approach. A critical review of parallel discrete event simulation indicated that a distributed model components approach using conservative or optimistic synchronization would be worth exploring. Experiments were therefore conducted using simulation models of queuing networks and Asynchronous Transfer Mode (ATM) networks to explore the potential speed-up possible using this approach. Specifically, it is shown that these techniques can be used successfully to speed-up the execution of useful telecommunication network simulations. A detailed investigation has demonstrated that conservative synchronization performs very well for applications with good look ahead properties and sufficient message traffic density and, given such properties, will significantly outperform optimistic synchronization. Optimistic synchronization, however, gives reasonable speed-up for models with a wider range of such properties and can be optimized for speed-up and memory usage at run time. Thus, it is confirmed as being more generally applicable particularly as model development is somewhat easier than for conservative synchronization. This has to be balanced against the more difficult task of developing and debugging an optimistic synchronization kernel and the application models

    Cache-Aware Memory Manager for Optimistic Simulations

    Get PDF
    Parallel Discrete Event Simulation is a well known technique for executing complex general-purpose simulations where models are described as objects the interaction of which is expressed through the generation of impulsive events. In particular, Optimistic Simulation allows full exploitation of the available computational power, avoiding the need to compute safety properties for the events to be executed. Optimistic Simulation platforms internally rely on several data structures, which are meant to support operations aimed at ensuring correctness, inter-kernel communication and/or event scheduling. These housekeeping and management operations access them according to complex patterns, commonly suffering from misuse of memory caching architectures. In particular, operations like log/restore access data structures on a periodic basis, producing the replacement of in-cache buffers related to the actual working set of the application logic, producing a non-negligible performance drop. In this work we propose generally-applicable design principles for a new memory management subsystem targeted at Optimistic Simulation platforms which can face this issue by wisely allocating memory buffers depending on their actual future access patterns, in order to enhance event-execution memory locality. Additionally, an application-transparent implementation within ROOT-Sim, an open-source generalpurpose optimistic simulation platform, is presented along with experimental results testing our proposal

    NUMA Time Warp

    Get PDF
    It is well known that Time Warp may suffer from large usage of memory, which may hamper the efficiency of the memory hierarchy. To cope with this issue, several approaches have been devised, mostly based on the reduction of the amount of used virtual memory, e.g., by the avoidance of checkpointing and the exploitation of reverse computing. In this article we present an orthogonal solution aimed at optimizing the latency for memory access operations when running Time Warp systems on Non-Uniform Memory Access (NUMA) multi-processor/multi-core computing systems. More in detail, we provide an innovative Linux-based architecture allowing per simulation-object management of memory segments made up by disjoint sets of pages, and supporting both static and dynamic binding of the memory pages reserved for an individual object to the different NUMA nodes, depending on what worker thread is in charge of running that simulation object along a given wall-clock-time window. Our proposal not only manages the virtual pages used for the live state image of the simulation object, rather, it also copes with memory pages destined to keep the simulation object's event buffers and any recoverability data. Further, the architecture allows memory access optimization for data (messages) exchanged across the different simulation objects running on the NUMA machine. Our proposal is fully transparent to the application code, thus operating in a seamless manner. Also, a free software release of our NUMA memory manager for Time Warp has been made available within the open source ROOT-Sim simulation platform. Experimental data for an assessment of our innovative proposal are also provided in this article

    Consistent and efficient output-streams management in optimistic simulation platforms

    Get PDF
    Optimistic synchronization is considered an effective means for supporting Parallel Discrete Event Simulations. It relies on a speculative approach, where concurrent processes execute simulation events regardless of their safety, and consistency is ensured via proper rollback mechanisms, upon the a-posteriori detection of causal inconsistencies along the events' execution path. Interactions with the outside world (e.g. generation of output streams) are a well-known problem for rollback-based systems, since the outside world may have no notion of rollback. In this context, approaches for allowing the simulation modeler to generate consistent output rely on either the usage of ad-hoc APIs (which must be provided by the underlying simulation kernel) or temporary suspension of processing activities in order to wait for the final outcome (commit/rollback) associated with a speculatively-produced output. In this paper we present design indications and a reference implementation for an output streams' management subsystem which allows the simulation-model writer to rely on standard output-generation libraries (e.g. stdio) within code blocks associated with event processing. Further, the subsystem ensures that the produced output is consistent, namely associated with events that are eventually committed, and system-wide ordered along the simulation time axis. The above features jointly provide the illusion of a classical (simple to deal with) sequential programming model, which spares the developer from being aware that the simulation program is run concurrently and speculatively. We also show, via an experimental study, how the design/development optimizations we present lead to limited overhead, giving rise to the situation where the simulation run would have been carried out with near-to-zero or reduced output management cost. At the same time, the delay for materializing the output stream (making it available for any type of audit activity) is shown to be fairly limited and constant, especially for good mixtures of I/O-bound vs CPU-bound behaviors at the application level. Further, the whole output streams' management subsystem has been designed in order to provide scalability for I/O management on clusters. © 2013 ACM
    • …
    corecore