7 research outputs found

    Design and analysis of dual-mode numerically controlled oscillators based controlled oscillator frequency modulation

    Get PDF
    In this paper, the design and analysis of dual-mode numerically controlled oscillators (NCO) based controlled oscillator frequency Modulation is implemented. Initially, input is given to the analog to digital (ADC) converter. This will change the input from analog to digital converter. After that, the pulse skipping mode (PSM) logic and proportional integral (PI) are applied to the converted data. After applying PSM logic, data is directly transferred to the connection block. The proportional and integral block will transfer the data will be decoded using the decoder. After decoding the values, it is saved using a modulo accumulator. After that, it is converted from one hot residue (OHR) to binary converter. The converted data is saved in the register. Now both data will pass through the gate driver circuit and output will be obtained finally. From simulation results, it can observe that the usage of metal oxide semiconductor field effect transistors (MOSFETs) and total nodes are very less in dual-mode NCO-based controlled oscillator frequency modulation

    A high resolution DDFS design on VHDL using bipartite table method

    Get PDF
    In this study, a Look Up Table (LUT) based Direct Digital Frequency Synthesizer (DDFS) is designed on VHDL. Bipartite Table Method, an advance memory compression method, is used together with quadratic compression method. 23 mHz frequency resolution is achieved with 100MHz clock input. The required memory is obtained 585 times smaller than traditional DDFSs. A MATLAB code is revealed to select the best design which provides the smallest required memory for 100 dB Spurious Free Dynamic Range (SFDR) level. The contents of the LUTs are also evaluated by using MATLAB software. The design is simulated for multiple frequencies between 23mHz-30MHz with VIVADO 2016.3 software. The simulation results perfectly match with calculations

    Synchronization Technique for OFDM-Based UWB System

    Get PDF

    A fully integrated SRAM-based CMOS arbitrary waveform generator for analog signal processing

    Get PDF
    This dissertation focuses on design and implementation of a fully-integrated SRAM-based arbitrary waveform generator for analog signal processing applications in a CMOS technology. The dissertation consists of two parts: Firstly, a fully-integrated arbitrary waveform generator for a multi-resolution spectrum sensing of a cognitive radio applications, and an analog matched-filter for a radar application and secondly, low-power techniques for an arbitrary waveform generator. The fully-integrated low-power AWG is implemented and measured in a 0.18-¥ìm CMOS technology. Theoretical analysis is performed, and the perspective implementation issues are mentioned comparing the measurement results. Moreover, the low-power techniques of SRAM are addressed for the analog signal processing: Self-deactivated data-transition bit scheme, diode-connected low-swing signaling scheme with a short-current reduction buffer, and charge-recycling with a push-pull level converter for power reduction of asynchronous design. Especially, the robust latch-type sense amplifier using an adaptive-latch resistance and fully-gated ground 10T-SRAM bitcell in a 45-nm SOI technology would be used as a technique to overcome the challenges in the upcoming deep-submicron technologies.Ph.D.Committee Chair: Kim, Jongman; Committee Member: Kang, Sung Ha; Committee Member: Lee, Chang-Ho; Committee Member: Mukhopadhyay, Saibal; Committee Member: Tentzeris, Emmanouil

    Reducing Lookup-Table Size in Direct Digital Frequency Synthesizers Using Optimized Multipartite Table Method

    No full text
    The use of the multipartite table methods (MTMs) to implement high-performance direct digital frequency synthesizers (DDFSs) is investigated in this paper. A closed-form expressions for the spurious-free dynamic range (SFDR) is obtained when a single table of offset (TO) is used in the multipartite approximation. In this case, the optimal design that minimizes storage requirement for a given SFDR can be obtained analytically. A numerical algorithm is also presented to obtain the optimal design also when two or more TOs are employed is the approximation. The VLSI implementation results and the comparison with previously proposed DDFS architectures demonstrate the effectiveness of multipartite table methods for the realization of high performance direct digital synthesizers

    Towards many-body physics with Rydberg-dressed cavity polaritons

    Get PDF
    An exciting frontier in quantum information science is the creation and manipulation of bottom-up quantum systems that are built and controlled one by one. For the past 30 years, we have witnessed signi cant progresses in harnessing strong atom- eld interactions for critical applications in quantum computation, communication, simulation, and metrology. By extension, we can envisage a quantum network consisting of material nodes coupled together with in nite-dimensional bosonic quantum channels. In this context, there has been active research worldwide to achieve quantum optical circuits, for which single atoms are wired by freely-propagating single photons through the circuit elements. For all these systems, the system-size expansion with atoms and photons results in a fundamental pathologic scaling that linearizes the very atom- eld interaction, and signi cantly limits the degree of non-classicality and entanglement in analog atom- eld quantum systems for atom number N 1. The long-term motivation of this MSc thesis is (i) to discover new physical mechanisms that extend the inherent scaling behavior of atom- eld interactions and (ii) to develop quantum optics toolkits that design dynamical gauge structures for the realization of lattice-gauge-theoretic quantum network and the synthesis of novel quantum optically gauged materials. The basic premise is to achieve the strong coupling regime for a quantum many-body material system interacting with the quantized elds of an optical cavity. Our laboratory e ort can be described as the march towards \many-body QED," where optical elds acquire some properties of the material interactions that constrain their dynamical processes, as with quantum eld theories. While such an e ort currently do not exist elsewhere, we are convicted that our work will become an essential endeavor to enable cavity quantum electrodynamics (QED) in the bona- de regime of quantum many-body physics in this entanglement frontier. In this context, I describe an example in Chapter 2 that utilizes strong RydbergRydberg interactions to design dynamical gauge structures for the quantum square ice models. Quantum uctuations driven by cavity-mediated in nite-range interaction stabilize the quantum-gauged system into a long-range entangled quantum spin liquid that may be detected through the time-ordered photoelectric statistics for photons leaking out of the cavity. Fractionalized \spinon" and \vison" excitations can be manipulated for topological quantum computation, and the emergent photons of arti cial QED in our lattice gauge theoretic system can be directly measured and studied. The laboratory challenge towards strongly coupled cavity Rydberg polaritons encompasses three daunting research milestones that push the technological boundaries beyond of the state-of-the-arts. In Chapter 3, I discuss our extreme-high-vacuum chamber (XHV) cluster system that allows the world's lowest operating vacuum environment P ' 10 Torr for an ultracold AMO experiment with long background-limited trap lifetimes. In Chapter 4, I discuss our ultrastable laser systems stabilized to the ultra-low-expansion optical cavities. Coupled with a scalable eld-programmable-gate-array (FPGA) digitalanalog control system, we can manipulate arbitrarily the phase-amplitude relationship of several dozens of laser elds across 300 nm to 1550 nm at mHz precision. In Chapter 5, we discuss the quantum trajectory simulations for manipulating the external degrees of freedom of ultracold atoms with external laser elds. Electrically tunable liquid crystal lens creates a dynamically tunable optical trap to move the ultracold atomic gases over long distance within the ultra-high-vacuum (UHV) chamber system. In Chapter 6, I discuss our collaborative development of two science cavity platforms { the \Rydberg" quantum dot and the many-body QED platforms. An important development was the research into new high-index IBS materials, where we have utilized our low-loss optical mirrors for extending the world's highest cavity nesse F 500k! We discuss the unique challenges of implementing optical cavity QED for Rydberg atoms, which required tremendous degrees of electromagnetic shielding and eld control. Single-crystal Sapphire structure, along with Angstrom-level diamond-turned Ti blade electrodes, is utilized for the eld compensation and extinction by > 60 dB. Single-crystal PZTs on silica V-grooves are utilized for the stabilization of the optical cavity with length uncertainty less than 1=100 of a single nucleon, along with extreme level of vibration isolation in a XHV environment. The capability to perform in-situ RF plasma cleaning allows the regeneration of optical mirrors when coated with a few Cs atoms. Lastly but not the least, we combine single-atom resolution quantum gas microscopy technique with superpixel holographic algorithm to project arbitrary real-time recon gurable di raction-limited optical potential landscapes for the preparation of low-entropy atom arrays

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore