3,213 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Efficiency analysis methodology of FPGAs based on lost frequencies, area and cycles

    Get PDF
    We propose a methodology to study and to quantify efficiency and the impact of overheads on runtime performance. Most work on High-Performance Computing (HPC) for FPGAs only studies runtime performance or cost, while we are interested in how far we are from peak performance and, more importantly, why. The efficiency of runtime performance is defined with respect to the ideal computational runtime in absence of inefficiencies. The analysis of the difference between actual and ideal runtime reveals the overheads and bottlenecks. A formal approach is proposed to decompose the efficiency into three components: frequency, area and cycles. After quantification of the efficiencies, a detailed analysis has to reveal the reasons for the lost frequencies, lost area and lost cycles. We propose a taxonomy of possible causes and practical methods to identify and quantify the overheads. The proposed methodology is applied on a number of use cases to illustrate the methodology. We show the interaction between the three components of efficiency and show how bottlenecks are revealed

    A versatile programming model for dynamic task scheduling on cluster computers

    Get PDF
    This dissertation studies the development of application programs for parallel and distributed computer systems, especially PC clusters. A methodology is proposed to increase the efficiency of code development, the productivity of programmers and enhance performance of executing the developed programs on PC clusters while facilitating improvement of scalability and code portability of these programs. A new programming model, named the Super-Programming Model (SPM), is created. Programs are developed assuming an instruction set architecture comprised of SuperInstructions (SIs). SPM models the target system as a large Virtual Machine (VM); VM contains functional units which are underlain with sub-computer systems and SIs are implemented with codes. When these functional units execute SIs, their codes will run on member computers to perform the corresponding operations. This approach resembles the process of designing instruction sets for microprocessors but the VM employs much coarser instructions and data structures. SIs use Super-Data Blocks (SDBs) as their operands. Each SI is assigned to a single member computer and is indivisible (i.e., its implementation is not interrupted for I/O). SIs have predictable execution times because SDB sizes are limited by predefined thresholds. These qualities of SIs help dynamic load balancing. Employing software to implement instructions makes this approach more flexible. The developed programs fit to architectures of cluster systems better. SPM provides mechanisms, such as dynamic load balancing, to assure the efficient execution of programs. The vast majority of current programming models lack such mechanisms for distributed environments that suffer from long communication latencies. Since SPM employs coarse-grain tasks, the overall management overhead is small. SDB access can often overlap the execution of other SIs; a cache system further decreases average memory latencies. Since all SDBs are virtual entities, with the runtime system support, they can be accessed in parallel and efficiently minimizes additional constraints to parallelism from underlying computer systems. In this research, a reference implementation of VM has been developed. A performance estimation model is developed that takes these features into account. Finally, the definition of scalability for parallel/distributed processing is refined to represent a multi-dimensional entity. Sample cases are analyzed

    Near Data Processing for Efficient and Trusted Systems

    Full text link
    We live in a world which constantly produces data at a rate which only increases with time. Conventional processor architectures fail to process this abundant data in an efficient manner as they expend significant energy in instruction processing and moving data over deep memory hierarchies. Furthermore, to process large amounts of data in a cost effective manner, there is increased demand for remote computation. While cloud service providers have come up with innovative solutions to cater to this increased demand, the security concerns users feel for their data remains a strong impediment to their wide scale adoption. An exciting technique in our repertoire to deal with these challenges is near-data processing. Near-data processing (NDP) is a data-centric paradigm which moves computation to where data resides. This dissertation exploits NDP to both process the data deluge we face efficiently and design low-overhead secure hardware designs. To this end, we first propose Compute Caches, a novel NDP technique. Simple augmentations to underlying SRAM design enable caches to perform commonly used operations. In-place computation in caches not only avoids excessive data movement over memory hierarchy, but also significantly reduces instruction processing energy as independent sub-units inside caches perform computation in parallel. Compute Caches significantly improve the performance and reduce energy expended for a suite of data intensive applications. Second, this dissertation identifies security advantages of NDP. While memory bus side channel has received much attention, a low-overhead hardware design which defends against it remains elusive. We observe that smart memory, memory with compute capability, can dramatically simplify this problem. To exploit this observation, we propose InvisiMem which uses the logic layer in the smart memory to implement cryptographic primitives, which aid in addressing memory bus side channel efficiently. Our solutions obviate the need for expensive constructs like Oblivious RAM (ORAM) and Merkle trees, and have one to two orders of magnitude lower overheads for performance, space, energy, and memory bandwidth, compared to prior solutions. This dissertation also addresses a related vulnerability of page fault side channel in which the Operating System (OS) induces page faults to learn application's address trace and deduces application secrets from it. To tackle it, we propose Sanctuary which obfuscates page fault channel while allowing the OS to manage memory as a resource. To do so, we design a novel construct, Oblivious Page Management (OPAM) which is derived from ORAM but is customized for page management context. We employ near-memory page moves to reduce OPAM overhead and also propose a novel memory partition to reduce OPAM transactions required. For a suite of cloud applications which process sensitive data we show that page fault channel can be tackled at reasonable overheads.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144139/1/shaizeen_1.pd

    Simplified vector-thread architectures for flexible and efficient data-parallel accelerators

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 165-170).This thesis explores a new approach to building data-parallel accelerators that is based on simplifying the instruction set, microarchitecture, and programming methodology for a vector-thread architecture. The thesis begins by categorizing regular and irregular data-level parallelism (DLP), before presenting several architectural design patterns for data-parallel accelerators including the multiple-instruction multiple-data (MIMD) pattern, the vector single-instruction multiple-data (vector-SIMD) pattern, the single-instruction multiple-thread (SIMT) pattern, and the vector-thread (VT) pattern. Our recently proposed VT pattern includes many control threads that each manage their own array of microthreads. The control thread uses vector memory instructions to efficiently move data and vector fetch instructions to broadcast scalar instructions to all microthreads. These vector mechanisms are complemented by the ability for each microthread to direct its own control flow. In this thesis, I introduce various techniques for building simplified instances of the VT pattern. I propose unifying the VT control-thread and microthread scalar instruction sets to simplify the microarchitecture and programming methodology. I propose a new single-lane VT microarchitecture based on minimal changes to the vector-SIMD pattern.(cont.) Single-lane cores are simpler to implement than multi-lane cores and can achieve similar energy efficiency. This new microarchitecture uses control processor embedding to mitigate the area overhead of single-lane cores, and uses vector fragments to more efficiently handle both regular and irregular DLP as compared to previous VT architectures. I also propose an explicitly data-parallel VT programming methodology that is based on a slightly modified scalar compiler. This methodology is easier to use than assembly programming, yet simpler to implement than an automatically vectorizing compiler. To evaluate these ideas, we have begun implementing the Maven data-parallel accelerator. This thesis compares a simplified Maven VT core to MIMD, vector-SIMD, and SIMT cores. We have implemented these cores with an ASIC methodology, and I use the resulting gate-level models to evaluate the area, performance, and energy of several compiled microbenchmarks. This work is the first detailed quantitative comparison of the VT pattern to other patterns. My results suggest that future data-parallel accelerators based on simplified VT architectures should be able to combine the energy efficiency of vector-SIMD accelerators with the flexibility of MIMD accelerators.by Christopher Francis Batten.Ph.D

    pocl: A Performance-Portable OpenCL Implementation

    Get PDF
    OpenCL is a standard for parallel programming of heterogeneous systems. The benefits of a common programming standard are clear; multiple vendors can provide support for application descriptions written according to the standard, thus reducing the program porting effort. While the standard brings the obvious benefits of platform portability, the performance portability aspects are largely left to the programmer. The situation is made worse due to multiple proprietary vendor implementations with different characteristics, and, thus, required optimization strategies. In this paper, we propose an OpenCL implementation that is both portable and performance portable. At its core is a kernel compiler that can be used to exploit the data parallelism of OpenCL programs on multiple platforms with different parallel hardware styles. The kernel compiler is modularized to perform target-independent parallel region formation separately from the target-specific parallel mapping of the regions to enable support for various styles of fine-grained parallel resources such as subword SIMD extensions, SIMD datapaths and static multi-issue. Unlike previous similar techniques that work on the source level, the parallel region formation retains the information of the data parallelism using the LLVM IR and its metadata infrastructure. This data can be exploited by the later generic compiler passes for efficient parallelization. The proposed open source implementation of OpenCL is also platform portable, enabling OpenCL on a wide range of architectures, both already commercialized and on those that are still under research. The paper describes how the portability of the implementation is achieved. Our results show that most of the benchmarked applications when compiled using pocl were faster or close to as fast as the best proprietary OpenCL implementation for the platform at hand.Comment: This article was published in 2015; it is now openly accessible via arxi

    Vector coprocessor sharing techniques for multicores: performance and energy gains

    Get PDF
    Vector Processors (VPs) created the breakthroughs needed for the emergence of computational science many years ago. All commercial computing architectures on the market today contain some form of vector or SIMD processing. Many high-performance and embedded applications, often dealing with streams of data, cannot efficiently utilize dedicated vector processors for various reasons: limited percentage of sustained vector code due to substantial flow control; inherent small parallelism or the frequent involvement of operating system tasks; varying vector length across applications or within a single application; data dependencies within short sequences of instructions, a problem further exacerbated without loop unrolling or other compiler optimization techniques. Additionally, existing rigid SIMD architectures cannot tolerate efficiently dynamic application environments with many cores that may require the runtime adjustment of assigned vector resources in order to operate at desired energy/performance levels. To simultaneously alleviate these drawbacks of rigid lane-based VP architectures, while also releasing on-chip real estate for other important design choices, the first part of this research proposes three architectural contexts for the implementation of a shared vector coprocessor in multicore processors. Sharing an expensive resource among multiple cores increases the efficiency of the functional units and the overall system throughput. The second part of the dissertation regards the evaluation and characterization of the three proposed shared vector architectures from the performance and power perspectives on an FPGA (Field-Programmable Gate Array) prototype. The third part of this work introduces performance and power estimation models based on observations deduced from the experimental results. The results show the opportunity to adaptively adjust the number of vector lanes assigned to individual cores or processing threads in order to minimize various energy-performance metrics on modern vector- capable multicore processors that run applications with dynamic workloads. Therefore, the fourth part of this research focuses on the development of a fine-to-coarse grain power management technique and a relevant adaptive hardware/software infrastructure which dynamically adjusts the assigned VP resources (number of vector lanes) in order to minimize the energy consumption for applications with dynamic workloads. In order to remove the inherent limitations imposed by FPGA technologies, the fifth part of this work consists of implementing an ASIC (Application Specific Integrated Circuit) version of the shared VP towards precise performance-energy studies involving high- performance vector processing in multicore environments
    • …
    corecore