1,330 research outputs found

    BING: Binarized normed gradients for objectness estimation at 300fps

    Get PDF
    Training a generic objectness measure to produce object proposals has recently become of significant interest. We observe that generic objects with well-defined closed boundaries can be detected by looking at the norm of gradients, with a suitable resizing of their corresponding image windows to a small fixed size. Based on this observation and computational reasons, we propose to resize the window to 8 × 8 and use the norm of the gradients as a simple 64D feature to describe it, for explicitly training a generic objectness measure. We further show how the binarized version of this feature, namely binarized normed gradients (BING), can be used for efficient objectness estimation, which requires only a few atomic operations (e.g., add, bitwise shift, etc.). To improve localization quality of the proposals while maintaining efficiency, we propose a novel fast segmentation method and demonstrate its effectiveness for improving BING’s localization performance, when used in multithresholding straddling expansion (MTSE) postprocessing. On the challenging PASCAL VOC2007 dataset, using 1000 proposals per image and intersectionover- union threshold of 0.5, our proposal method achieves a 95.6% object detection rate and 78.6% mean average best overlap in less than 0.005 second per image

    Low-power accelerators for cognitive computing

    Get PDF
    Deep Neural Networks (DNNs) have achieved tremendous success for cognitive applications, and are especially efficient in classification and decision making problems such as speech recognition or machine translation. Mobile and embedded devices increasingly rely on DNNs to understand the world. Smartphones, smartwatches and cars perform discriminative tasks, such as face or object recognition, on a daily basis. Despite the increasing popularity of DNNs, running them on mobile and embedded systems comes with several main challenges: delivering high accuracy and performance with a small memory and energy budget. Modern DNN models consist of billions of parameters requiring huge computational and memory resources and, hence, they cannot be directly deployed on low-power systems with limited resources. The objective of this thesis is to address these issues and propose novel solutions in order to design highly efficient custom accelerators for DNN-based cognitive computing systems. In first place, we focus on optimizing the inference of DNNs for sequence processing applications. We perform an analysis of the input similarity between consecutive DNN executions. Then, based on the high degree of input similarity, we propose DISC, a hardware accelerator implementing a Differential Input Similarity Computation technique to reuse the computations of the previous execution, instead of computing the entire DNN. We observe that, on average, more than 60% of the inputs of any neural network layer tested exhibit negligible changes with respect to the previous execution. Avoiding the memory accesses and computations for these inputs results in 63% energy savings on average. In second place, we propose to further optimize the inference of FC-based DNNs. We first analyze the number of unique weights per input neuron of several DNNs. Exploiting common optimizations, such as linear quantization, we observe a very small number of unique weights per input for several FC layers of modern DNNs. Then, to improve the energy-efficiency of FC computation, we present CREW, a hardware accelerator that implements a Computation Reuse and an Efficient Weight Storage mechanism to exploit the large number of repeated weights in FC layers. CREW greatly reduces the number of multiplications and provides significant savings in model memory footprint and memory bandwidth usage. We evaluate CREW on a diverse set of modern DNNs. On average, CREW provides 2.61x speedup and 2.42x energy savings over a TPU-like accelerator. In third place, we propose a mechanism to optimize the inference of RNNs. RNN cells perform element-wise multiplications across the activations of different gates, sigmoid and tanh being the common activation functions. We perform an analysis of the activation function values, and show that a significant fraction are saturated towards zero or one in popular RNNs. Then, we propose CGPA to dynamically prune activations from RNNs at a coarse granularity. CGPA avoids the evaluation of entire neurons whenever the outputs of peer neurons are saturated. CGPA significantly reduces the amount of computations and memory accesses while avoiding sparsity by a large extent, and can be easily implemented on top of conventional accelerators such as TPU with negligible area overhead, resulting in 12% speedup and 12% energy savings on average for a set of widely used RNNs. Finally, in the last contribution of this thesis we focus on static DNN pruning methodologies. DNN pruning reduces memory footprint and computational work by removing connections and/or neurons that are ineffectual. However, we show that prior pruning schemes require an extremely time-consuming iterative process that requires retraining the DNN many times to tune the pruning parameters. Then, we propose a DNN pruning scheme based on Principal Component Analysis and relative importance of each neuron's connection that automatically finds the optimized DNN in one shot.Les xarxes neuronals profundes (DNN) han aconseguit un èxit enorme en aplicacions cognitives, i són especialment eficients en problemes de classificació i presa de decisions com ara reconeixement de veu o traducció automàtica. Els dispositius mòbils depenen cada cop més de les DNNs per entendre el món. Els telèfons i rellotges intel·ligents, o fins i tot els cotxes, realitzen diàriament tasques discriminatòries com ara el reconeixement de rostres o objectes. Malgrat la popularitat creixent de les DNNs, el seu funcionament en sistemes mòbils presenta diversos reptes: proporcionar una alta precisió i rendiment amb un petit pressupost de memòria i energia. Les DNNs modernes consisteixen en milions de paràmetres que requereixen recursos computacionals i de memòria enormes i, per tant, no es poden utilitzar directament en sistemes de baixa potència amb recursos limitats. L'objectiu d'aquesta tesi és abordar aquests problemes i proposar noves solucions per tal de dissenyar acceleradors eficients per a sistemes de computació cognitiva basats en DNNs. En primer lloc, ens centrem en optimitzar la inferència de les DNNs per a aplicacions de processament de seqüències. Realitzem una anàlisi de la similitud de les entrades entre execucions consecutives de les DNNs. A continuació, proposem DISC, un accelerador que implementa una tècnica de càlcul diferencial, basat en l'alt grau de semblança de les entrades, per reutilitzar els càlculs de l'execució anterior, en lloc de computar tota la xarxa. Observem que, de mitjana, més del 60% de les entrades de qualsevol capa de les DNNs utilitzades presenten canvis menors respecte a l'execució anterior. Evitar els accessos de memòria i càlculs d'aquestes entrades comporta un estalvi d'energia del 63% de mitjana. En segon lloc, proposem optimitzar la inferència de les DNNs basades en capes FC. Primer analitzem el nombre de pesos únics per neurona d'entrada en diverses xarxes. Aprofitant optimitzacions comunes com la quantització lineal, observem un nombre molt reduït de pesos únics per entrada en diverses capes FC de DNNs modernes. A continuació, per millorar l'eficiència energètica del càlcul de les capes FC, presentem CREW, un accelerador que implementa un eficient mecanisme de reutilització de càlculs i emmagatzematge dels pesos. CREW redueix el nombre de multiplicacions i proporciona estalvis importants en l'ús de la memòria. Avaluem CREW en un conjunt divers de DNNs modernes. CREW proporciona, de mitjana, una millora en rendiment de 2,61x i un estalvi d'energia de 2,42x. En tercer lloc, proposem un mecanisme per optimitzar la inferència de les RNNs. Les cel·les de les xarxes recurrents realitzen multiplicacions element a element de les activacions de diferents comportes, sigmoides i tanh sent les funcions habituals d'activació. Realitzem una anàlisi dels valors de les funcions d'activació i mostrem que una fracció significativa està saturada cap a zero o un en un conjunto d'RNNs populars. A continuació, proposem CGPA per podar dinàmicament les activacions de les RNNs a una granularitat gruixuda. CGPA evita l'avaluació de neurones senceres cada vegada que les sortides de neurones parelles estan saturades. CGPA redueix significativament la quantitat de càlculs i accessos a la memòria, aconseguint en mitjana un 12% de millora en el rendiment i estalvi d'energia. Finalment, en l'última contribució d'aquesta tesi ens centrem en metodologies de poda estàtica de les DNNs. La poda redueix la petjada de memòria i el treball computacional mitjançant l'eliminació de connexions o neurones redundants. Tanmateix, mostrem que els esquemes de poda previs fan servir un procés iteratiu molt llarg que requereix l'entrenament de les DNNs moltes vegades per ajustar els paràmetres de poda. A continuació, proposem un esquema de poda basat en l'anàlisi de components principals i la importància relativa de les connexions de cada neurona que optimitza automàticament el DNN optimitzat en un sol tret sense necessitat de sintonitzar manualment múltiples paràmetresPostprint (published version
    corecore