2,088 research outputs found

    Making overtaking cyclists safer: Driver intention models in threat assessment and decision-making of advanced driver assistance system

    Get PDF
    Introduction: The number of cyclist fatalities makes up 3% of all fatalities globally and 7.8% in the European Union. Cars overtaking cyclists on rural roads are complex situations. Miscommunication and misunderstandings between road users may lead to crashes and severe injuries, particularly to cyclists, due to lack of protection. When making a car overtaking a cyclist safer, it is important to understand the interaction between road users and use in the development of an Advanced Driver Assistance System (ADAS). Methods: First, a literature review was carried out on driver and interaction modeling. A Unified Modeling Language (UML) framework was introduced to operationalize the interaction definition to be used in the development of ADAS. Second, the threat assessment and decision-making algorithm were developed that included the driver intention model. The counterfactual simulation was carried out on artificial crash data and field data to understand the intention-based ADAS\u27s performance and crash avoidance compared to a conventional system. The method focused on cars overtaking cyclists when an oncoming vehicle was present. Results: An operationalized definition of interaction was proposed to highlight the interaction between road users. The framework proposed uses UML diagrams to include interaction in the existing driver modeling approaches. The intention-based ADAS results showed that using the intention model, earlier warning or emergency braking intervention can be activated to avoid a potential rear-end collision with a cyclist without increasing more false activations than a conventional system. Conclusion: The approach used to integrate the driver intention model in developing an intention-based ADAS can improve the system\u27s effectiveness without compromising its acceptance. The intention-based ADAS has implications towards reducing worldwide road fatalities and in achieving sustainable development goals and car assessment program

    Traffic Safety Potential and Effectiveness of Lane Keeping Support

    Get PDF
    In the road transport system, crashes due to lane departure account for a large proportion of the most severe crashes that passenger car occupants are exposed to. While Electronic Stability Control (ESC) effectively prevents lane departure due to loss of control, lane departure due to unintentional drifting has not been addressed to the same extent. This thesis is based on four papers providing knowledge of lane keeping support integrated in vehicles and road infrastructure. More precise, the safety potential and effectiveness of Lane Departure Warning (LDW) was studied as well as the effectiveness of centreline rumble strips (CLRS). Also, the potential safety benefits of Emergency Lane Keeping (ELK) and Autonomous Emergency Steering (AES) with enhanced lateral vehicle positioning were studied. Reviewing real-world in-depth data of 138 fatal crashes in Sweden 2010 and 114 in 2017, the results show that virtually half of the single vehicle and head-on crashes involved unintentional drift-out-of-lane, where LDW, ELK and AES should have had the potential to prevent the majority of these crashes. Estimating the effectiveness of LDW by analysing 1,853 police reported real-world injury crashes during 2007‒2015 extracted from the Swedish Traffic Accident Data Acquisition (STRADA) database and applying the induced exposure method, it was found that LDW halved the risk of being in a head-on or single passenger car injury crash. Posted speed limits were at 70 km/h and above and the road surface had not been covered by ice or snow. Estimating the effectiveness of CLRS by merging STRADA injury crashes during 2011‒2016 involving 7,490 cars with the National Road Database in Sweden (NVDB) and applying the induced exposure method, the results show a reduction in head-on and single car crashes. Crashes involving drift-out-of-lane to the left were reduced by 40% (19‒56%) for ESC-equipped cars, and by 29% (11‒44%) for cars without ESC. It could be confirmed that in-depth data with high detail can provide benefits in evaluating future road safety features. Furthermore, it was found that merging STRADA, NVDB and individual vehicle equipment data has significant methodological benefits in combination with data efficient methods such as the induced exposure approach.LDW provided by the vehicle industry and detectable lane markings provided by road authorities are parts of a system showing significant traffic safety benefits. As both components are dependent on each other, this makes safety the responsibility of both road authorities and the vehicle industry. Not only do LDW and CLRS complement each other, they also complement ESC and are able to avoid critical situations. LDW and CLRS are two of the most important traffic safety features for the foreseeable future, in which the share of unintentional lane drifting crashes is expected to increase. ELK will in the near future be mandatory for new cars, hereby detectable lanes and lateral vehicle position awareness will be even more important. Future research should focus on increasing the synergy between car and infrastructure interventions, holistically and systematically utilising the integrated safety chain

    Estimated Assessment of the Potential Impact of Driverassistance Systems Used in Automated Vehicles on the Level of Road Safety in Poland

    Get PDF
    Strengthening road safety in the face of the enormous development of the automotive in recent decades is crucial. The safety benefits of automated vehicles are paramount. Automated vehicles have the potential to remove human error in road traffic, which will help protect drivers and passengers, as well as pedestrians and bicyclists. The carried-out forecasts are pioneering for Polish road traffic conditions. In England, studies have been carried out to determine the estimated impact of autonomous vehicles on road safety in simulated traffic conditions on the motorway. In Poland, preliminary forecasts of the reduction in the number of road accidents were made; however, they were based on other assumptions. Therefore, estimating the impact of using autonomous vehicles in order to increase the level of road safety is an innovative activity for Polish road conditions. For the purposes of this article, available statistical data on vehicles registered in Poland, their equipment with advanced driver-assistance systems as well as accident data and their causes were analyzed. A diagnosis of Road Safety in Poland in 2018 (base year for further estimations) was made, taking into account the trend of recent years together with an indication of the most common causes of road accidents. These data were compiled with statistical data from other countries about the influence of driversupport systems on traffic safety. Possible potential for increasing Road Safety in Poland by the year 2030 was estimated. The analyses were prepared assuming different types of processes related to traffic, road safety, and the recent development of the passenger car fleet in Poland. Presented results show four scenarios of road safety change, where the number of accidents is reduced with statistical average of 5000 reduction in the year 2030. These expectations are based on various predictable factors connected with upgrade of car fleet quality and take into account changes in road safety observed in recent years. Based on the current trend of driving automation and rapid development of driver-support systems, the provided estimations were found reliable and likely. The conducted research shows the benefits and the need for the use of driver-assistance systems in vehicles as they can measurably affect the level of road safety

    Safety Evaluation Using Counterfactual Simulations: The use of computational driver behavior models in crash avoidance systems and virtual simulations with optimal subsampling

    Get PDF
    Traffic safety is a problem worldwide. In-vehicle conflict and crash avoidance systems have been under development and assessment for some time, as integral parts of Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS). Among the methods used to assess conflict and crash avoidance systems developed by the automotive industry, virtual safety assessment methods have been shown to have great potential and efficiency. In fact, scenario generation-based virtual safety assessments play—and are likely to continue to play—a very important role in the assessments of vehicles of all levels of automation. The ultimate aim of this thesis is to improve the safety performance of conflict and crash avoidance systems. This aim is addressed through the use of computational driver models in two different ways. First, by using comfort-zone boundaries in system design, and second, by using a behavior-based crash-causation model together with a novel optimized scenario generation method for virtual safety assessment.The first objective of this thesis is to investigate how a driver model which includes road users’ comfortable behaviors in crash avoidance algorithms impacts the systems’ safety performance and the residual crash characteristics. Chinese car-to-two-wheeler crashes were targeted; Automated Emergency Braking (AEB) algorithms, which comprised the proposed crash avoidance systems, were compared to a traditional AEB algorithm. The proposed algorithms showed larger safety performance benefits. In addition, the similarities in residual crash characteristics regarding impact speed and location after different AEB implementations can potentially simplify the designs of in-crash protection system in future.The second objective is to develop and apply a method for efficient subsampling in crash-causation-model-based scenario generation for virtual safety assessment. The method, which is machine-learning-assisted, actively and iteratively updates the sampling probability based on new simulation results. The crash-causation model is based on off-road glances and a distribution of driver maximum decelerations in critical situations. A simple time-to-collision-based AEB algorithm was used to demonstrate the assessment process as well as the benefits of combining crash-causation-model-based scenario generation and optimal subsampling. The sampling methods are designed to target specific safety benefit indicators, such as impact speed reduction and crash avoidance rate. The results of the study show that the proposed sampling method requires almost 50% fewer simulations than traditional importance sampling.Future work aims to focus on applying the active sampling method to driver-model-based car-to-vulnerable road user (VRU) scenario generation. In addition to assessing conflict and crash avoidance system performance, a novel stopping criterion based on Bayesian future prediction will be further developed and demonstrated for use in experiments (e.g., as part of developing driver models) and virtual simulations (e.g., using driver-behavior-based crash-causation models). This criterion will be able to indicate when studies are unlikely to yield actionable results within the budget available, facilitating the decision to discontinue them while they are being run

    INTELLIGENTE TRANSPORT SYSTEMEN ITS EN VERKEERSVEILIGHEID

    Get PDF
    This report discusses Intelligent Transport Systems (ITS). This generic term is used for a broad range of information-, control- and electronic technology that can be integrated in the road infrastructure and the vehicles themselves, saving lives, time and money bymonitoring and managing traffic flows, reducing conges-tion, avoiding accidents, etc. Because this report was written in the scope of the Policy Research Centre Mobility & Public Works, track Traffic Safety, it focuses on ITS systems from the traffic safety point of view. Within the whole range of ITS systems, two categories can be distinguished: autonomous and cooperative systems. Autonomous systems are all forms of ITS which operate by itself, and do not depend on the cooperation with other vehicles or supporting infrastructure. Example applications are blind spot detection using radar, electronic stability control, dynamic traffic management using variable road signs, emergency call, etc. Cooperative systems are ITS systems based on communication and cooperation, both between vehicles as between vehicles and infrastructure. Example applications are alerting vehicles approaching a traffic jam, exchanging data regarding hazardous road conditions, extended electronic brake light, etc. In some cases, autonomous systems can evolve to autonomous cooperative systems. ISA (Intelligent Speed Adaptation) is an example of this: the dynamic aspect as well as communication with infrastructure (eg Traffic lights, Variable Message Sign (VMS)...) can provide additional road safety. This is the clear link between the two parts of this report. The many ITS applications are an indicator of the high expectations from the government, the academic world and the industry regarding the possibilities made possible by both categories of ITS systems. Therefore, the comprehensive discussion of both of them is the core of this report. The first part of the report covering the autonomous systems treats two aspects: 1. Overview of European projects related to mobility and in particular to road safety 2. Overview for guidelines for the evaluation of ITS projects. Out of the wide range of diverse (autonomous) ITS applications a selection is made; this selection is focused on E Safety Forum and PreVENT. Especially the PreVent research project is interesting because ITS-applications have led to a number of concrete demonstration vehicles that showed - in protected and unprotected surroundings- that these ITS-applications are already technically useful or could be developed into useful products. The component “guidelines for the evaluation of ITS projects” outlines that the government has to have specific evaluation tools if the government has the ambition of using ITS-applications for road safety. Two projects -guidelines for the evaluation of ITS projects- are examined; a third evaluation method is only mentioned because this description shows that a specific targeting of the government can be desirable : 1. TRACE describes the guidelines for the evaluation of ITS projects which are useful for the evaluation of specific ITS-applications. 2. FITS contains Finnish guidelines for the evaluation of ITS project; FIS is an adaptation of methods used for evaluation of transport projects. 3. The third evaluation method for the evaluation of ITS projects is developed in an ongoing European research project, eImpact. eImpact is important because, a specific consultation of stake holders shows that the social importance of some techniques is underestimated. These preliminary results show that an appropriate guiding role for the government could be important. In the second part of this document the cooperative systems are discussed in depth. These systems enable a large number of applications with an important social relevance, both on the level of the environment, mobility and traffic safety. Cooperative systems make it possible to warn drivers in time to avoid collisions (e.g. when approaching the tail of a traffic jam, or when a ghost driver is detected). Hazardous road conditions can be automatically communicated to other drivers (e.g. after the detection of black ice or an oil trail by the ESP). Navigation systems can receive detailed real-time up-dates about the current traffic situation and can take this into account when calculating their routes. When a traffic distortion occurs, traffic centers can immediately take action and can actively influence the way that the traffic will be diverted. Drivers can be notified well in advance about approaching emergency vehicles, and can be directed to yield way in a uniform manner. This is just a small selection from the large number of applications that are made possible because of cooperative ITS systems, but it is very obvious that these systems can make a significant positive contribution to traffic safety. In literature it is estimated that the decrease of accidents with injuries of fatalities will be between 20% and 50% . It is not suprising that ITS systems receive a lot of attention for the moment. On an international level, a number of standards are being established regarding this topic. The International Telecommunications Uniont (ITU), Institute for Electrical and Electronics Engineers (IEEE), International Organization for Standardization (ISO), Association of Radio Industries and Business (ARIB) and European committee for standardization (CEN) are currently defining standards that describe different aspects of ITS systems. One of the names that is mostly mentioned in literature is the ISO TC204/WG16 Communications Architecture for Land Mobile environment (CALM) standard. It describes a framework that enables transparent (both for the application and the user) continuous communication through different communication media. Besides the innumerable standardization activities, there is a great number of active research projects. On European level, the most important are the i2010 Intelligent Car Initiative, the eSafety Forum, and the COMeSafety, the CVIS, the SAFESPOT, the COOPERS and the SEVECOM project. The i2010 Intelligent Car Initiative is an European initiative with the goal to halve the number of traffic casualties by 2010. The eSafety Forum is an initiative of the European Commission, industry and other stakeholders and targets the acceleration of development and deployment of safety-related ITS systems. The COMeSafety project supports the eSafety Forum on the field of vehicle-to-vehicle and vehicle-to-infrastructure communication. In the CVIS project, attention is given to both technical and non-technical issues, with the main goal to develop the first free and open reference implementation of the CALM architecture. The SAFEST project investigates which data is important for safety applications, and with which algorithmsthis data can be extracted from vehicles and infrastructure. The COOPERS project mainly targets communication between vehicles and dedicated roadside infrastructure. Finally, the SEVECOM project researches security and privacy issues. Besides the European projects, research is also conducted in the United States of America (CICAS and VII projects) and in Japan (AHSRA, VICS, Smartway, internetITS). Besides standardization bodies and governmental organizations, also the industry has a considerable interest in ITS systems. In the scope of their ITS activities, a number of companies are united in national and international organizations. On an international level, the best known names are the Car 2 Car Communication Consortium, and Ertico. The C2C CC unites the large European car manufacturers, and focuses on the development of an open standard for vehicle-to-vehicle and vehicle-to-infrastructure communications based on the already well established IEEE 802.11 WLAN standard. Ertico is an European multi-sector, public/private partnership with the intended purpose of the development and introduction of ITS systems. On a national level, FlandersDrive and The Telematics Cluster / ITS Belgium are the best known organizations. Despite the worldwide activities regarding (cooperative) ITS systems, there still is no consensus about the wireless technology to be used in such systems. This can be put down to the fact that a large number of suitable technologies exist or are under development. Each technology has its specific advantages and disadvantages, but no single technology is the ideal solution for every ITS application. However, the different candidates can be classified in three distinct categories. The first group contains solutions for Dedicated Short Range Communication (DSRC), such as the WAVE technology. The second group is made up of several cellular communication networks providing coverage over wide areas. Examples are GPRS (data communication using the GSM network), UMTS (faster then GPRS), WiMAX (even faster then UMTS) and MBWA (similar to WiMAX). The third group consists of digital data broadcast technologies such as RDS (via the current FM radio transmissions, slow), DAB and DMB (via current digital radio transmissions, quicker) and DVB-H (via future digital television transmissions for mobiledevices, quickest). The previous makes it clear that ITS systems are a hot topic right now, and they receive a lot of attention from the academic world, the standardization bodies and the industry. Therefore, it seems like that it is just a matter of time before ITS systems will find their way into the daily live. Due to the large number of suitable technologies for the implementation of cooperative ITS systems, it is very hard to define which role the government has to play in these developments, and which are the next steps to take. These issues were addressed in reports produced by the i2010 Intelligent Car Initiative and the CVIS project. Their state of the art overview revealed that until now, no country has successfully deployed a fully operational ITS system yet. Seven EU countries are the furthest and are already in the deployment phase: Sweden, Germany, the Netherlands, the United Kingdom, Finland, Spain and France. These countries are trailed by eight countries which are in the promotion phase: Denmark, Greece, Italy, Austria, Belgium,Norway, the Czech Republic and Poland. Finally, the last ten countries find themselves in the start-up phase: Estonia, Lithuania, Latvia, Slovenia, Slovakia, Hungary, Portugal, Switzerland, Ireland and Luxembourg. These European reports produced by the i2010 Intelligent Car Initiative and the CVIS project have defined a few policy recommendations which are very relevant for the Belgian and Flemish government. The most important recommendations for the Flemish government are: • Support awareness: research revealed that civilians consider ITS applications useful, but they are not really willing to pay for this technology. Therefore, it is important to convince the general public of the usefulness and the importance of ITS systems. • Fill the gaps: Belgium is situated in the promotion phase. This means that it should focus at identifying the missing stakeholders, and coordinating national and regional ITS activities. Here it is important that the research activities are coordinated in a national and international context to allow transfer of knowledge from one study to the next, as well as the results to be comparable. • Develop a vision: in the scope of ITS systems policies have to be defined regarding a large number of issues. For instance there is the question if ITS users should be educated, meaning that the use of ITS systems should be the subject of the drivers license exam. How will the regulations be for the technical inspection of vehicles equipped with ITS technology? Will ITS systems be deployed on a voluntary base, or will they e.g. be obliged in every new car? Will the services be offered by private companies, by the public authorities, or by a combination of them? Which technology will be used to implement ITS systems? These are just a few of the many questions where the government will have to develop a point of view for. • Policy coordination: ITS systems are a policy subject on an international, national and regional level. It is very important that these policy organizations can collaborate in a coordinated manner. • Iterative approach to policy development: developing policies for this complex matter is not a simple task. This asks for an iterative approach, where policy decisions are continuously refined and adjusted

    Design and evaluation of safety-critical applications based on inter-vehicle communication

    Get PDF
    Inter-vehicle communication has a potential to improve road traffic safety and efficiency. Technical feasibility of communication between vehicles has been extensively studied, but due to the scarcity of application-level research, communication\u27s impact on the road traffic is still unclear. This thesis addresses this uncertainty by designing and evaluating two fail-safe applications, namely, Rear-End Collision Avoidance and Virtual Traffic Lights

    Towards an Improved Safety Benefit Assessment for Heavy Trucks - Introduction of a framework for the combination of different data sources

    Get PDF
    Although heavy goods vehicles (HGVs) were only involved in 4.4% out of more than 1 million crashes that occurred on European roads in 2017, their share in crashes with fatal outcome was almost three times larger (12%). Advanced Driver Assistance Systems (ADAS) have the potential to mitigate the consequences of these crashes or avoid them altogether. In order to prioritise the most promising system, several types of safety benefit assessment are performed separately and independently of each other. These assessments miss however a combination into a common output, i.e. they are not able to provide a holistic overview but only show compartmentalised results.The first objective of this thesis is to provide a framework that can incorporate multiple data sources and combine their results into one common safety benefit output. The proposed framework within this thesis is based on Bayesian modelling and can update prior information (e.g. simulation results of a new ADAS) with new observations (e.g. test track results of the ADAS). The framework can incorporate additional information such as user acceptance and market penetration of the ADAS for an improved benefit assessment. The output of the framework can easily be incorporated as prior knowledge in new safety benefit assessments, e.g. when new data is available.The second objective is to prepare the application of the framework for the assessment of the safety benefit associated to the introduction of new ADAS for long-haul trucks. In order to specify the most critical crash scenarios for HGVs in Europe, a detailed, three-level analysis of crashes involving long-haul trucks was performed, starting on a general European level and going to in-depth crash data. The identified target scenarios are (a) rear-end crashes with the truck as the striking vehicle, (b) crashes between a right-turning truck and adjacent cyclist and (c) crashes between a truck and a pedestrian crossing in front of the truck. These three scenarios should be the basis for ADAS development and further addressed by driver behaviour modelling in the future.Future work will focus on improving simulation results by incorporating more accurate driver models, that are better able to represent truck driver behaviour, e.g. brake or steering reactions. These models will help to obtain more valid simulation results, and thereby increase the output quality of the framework

    The safety potential of automatic emergency braking and adaptive cruise control and actions to improve the potential

    Get PDF
    The study investigates the potential of Automatic Emergency Braking (AEB) and Adaptive Cruise Control (ACC) systems to prevent fatal rear-end, intersection and pedestrian crashes in Finland. The systems’ possibilities to prevent crashes were assessed using data on 115 in-depth investigated fatal crashes. The data includes all fatal crashes in the three studied crash types in 2014–2016. This study considers the impact of estimated speed, weather conditions and intentionality on the systems’ operation. AEB and ACC could potentially have prevented 41% of the crashes. The highest safety potential in terms of share of hypothetically prevented crashes was recognised in rear-end (45%) and pedestrian crashes (45%) and the lowest in intersection crashes (36%). This study complements previous research, which amount is low especially considering the potential to reduce pedestrian and intersection crashes, and which has typically been limited in the aspects that are considered in analysing the safety potential.acceptedVersionPeer reviewe

    Safety-critical scenarios and virtual testing procedures for automated cars at road intersections

    Get PDF
    This thesis addresses the problem of road intersection safety with regard to a mixed population of automated vehicles and non-automated road users. The work derives and evaluates safety-critical scenarios at road junctions, which can pose a particular safety problem involving automated cars. A simulation and evaluation framework for car-to-car accidents is presented and demonstrated, which allows examining the safety performance of automated driving systems within those scenarios. Given the recent advancements in automated driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual testing environments or on real-world test tracks. Since it is unrealistic to cover all possible combinations of traffic situations and environment conditions, the challenge is to find the key driving situations to be evaluated at junctions. Against this background, a novel method to derive critical pre-crash scenarios from historical car accident data is presented. It employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1,056 junction crashes in the UK, which were exported from the in-depth On-the-Spot database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. As a follow-up to the scenario generation, the thesis further presents a novel, modular framework to transfer the derived collision scenarios to a sub-microscopic traffic simulation environment. The software CarMaker is used with MATLAB/Simulink to simulate realistic models of vehicles, sensors and road environments and is combined with an advanced Monte Carlo method to obtain a representative set of parameter combinations. The analysis of different safety performance indicators computed from the simulation outputs reveals collision and near-miss probabilities for selected scenarios. The usefulness and applicability of the simulation and evaluation framework is demonstrated for a selected junction scenario, where the safety performance of different in-vehicle collision avoidance systems is studied. The results show that the number of collisions and conflicts were reduced to a tenth when adding a crossing and turning assistant to a basic forward collision avoidance system. Due to its modular architecture, the presented framework can be adapted to the individual needs of future users and may be enhanced with customised simulation models. Ultimately, the thesis leads to more efficient workflows when virtually testing automated driving at intersections, as a complement to field operational tests on public roads
    • …
    corecore