2,448 research outputs found

    EFFECT: An End-to-End Framework for Evaluating Strategies for Parallel AI Anomaly Detection

    Get PDF
    Neural networks achieve high accuracy in tasks like image recognition or segmentation. However, their application in safety-critical domains is limited due to their black-box nature and vulnerability to specific types of attacks. To mitigate this, methods detecting out-of-distribution or adversarial attacks in parallel to the network inference were introduced. These methods are hard to compare because they were developed for different use cases, datasets, and networks. To fill this gap, we introduce EFFECT, an end-to-end framework to evaluate and compare new methods for anomaly detection, without the need for retraining and by using traces of intermediate inference results. The presented workflow works with every preexisting neural network architecture and evaluates the considered anomaly detection methods in terms of accuracy and computational complexity. We demonstrate EFFECT\u27s capabilities, by creating new detectors for ShuffleNet and MobileNetV2 for anomaly detection as well as fault origin detection. EFFECT allows us to design an anomaly detector, based on the Mahalanobis distance as well as CNN based detectors. For both use cases, we achieve accuracies of over 85 %, classifying inferences as normal or abnormal, and thus beating existing methods

    Security of 5G-V2X: Technologies, Standardization and Research Directions

    Full text link
    Cellular-Vehicle to Everything (C-V2X) aims at resolving issues pertaining to the traditional usability of Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) networking. Specifically, C-V2X lowers the number of entities involved in vehicular communications and allows the inclusion of cellular-security solutions to be applied to V2X. For this, the evolvement of LTE-V2X is revolutionary, but it fails to handle the demands of high throughput, ultra-high reliability, and ultra-low latency alongside its security mechanisms. To counter this, 5G-V2X is considered as an integral solution, which not only resolves the issues related to LTE-V2X but also provides a function-based network setup. Several reports have been given for the security of 5G, but none of them primarily focuses on the security of 5G-V2X. This article provides a detailed overview of 5G-V2X with a security-based comparison to LTE-V2X. A novel Security Reflex Function (SRF)-based architecture is proposed and several research challenges are presented related to the security of 5G-V2X. Furthermore, the article lays out requirements of Ultra-Dense and Ultra-Secure (UD-US) transmissions necessary for 5G-V2X.Comment: 9 pages, 6 figures, Preprin

    Enhanced cyberspace defense with real-time distributed systems using covert channel publish-subscribe broker pattern communications

    Get PDF
    In this thesis, we propose a novel cyberspace defense solution to the growing sophistication of threats facing networks within the Department of Defense. Current network defense strategies, including traditional intrusion detection and firewall-based perimeter defenses, are ineffective against increasingly sophisticated social engineering attacks such as spear-phishing which exploit individuals with targeted information. These asymmetric attacks are able to bypass current network defense technologies allowing adversaries extended and often unrestricted access to portions of the enterprise. Network defense strategies are hampered by solutions favoring network-centric designs which disregard the security requirements of the specific data and information on the networks. Our solution leverages specific technology characteristics from traditional network defense systems and real-time distributed systems using publish-subscribe broker patterns to form the foundation of a full-spectrum cyber operations capability. Building on this foundation, we present the addition of covert channel communications within the distributed systems framework to protect sensitive Command and Control and Battle Management messaging from adversary intercept and exploitation. Through this combined approach, DoD and Service network defense professionals will be able to meet sophisticated cyberspace threats head-on while simultaneously protecting the data and information critical to warfighting Commands, Services and Agencies.http://archive.org/details/enhancedcyberspa109454049US Air Force (USAF) author.Approved for public release; distribution is unlimited

    Deep learning : enhancing the security of software-defined networks

    Get PDF
    Software-defined networking (SDN) is a communication paradigm that promotes network flexibility and programmability by separating the control plane from the data plane. SDN consolidates the logic of network devices into a single entity known as the controller. SDN raises significant security challenges related to its architecture and associated characteristics such as programmability and centralisation. Notably, security flaws pose a risk to controller integrity, confidentiality and availability. The SDN model introduces separation of the forwarding and control planes. It detaches the control logic from switching and routing devices, forming a central plane or network controller that facilitates communications between applications and devices. The architecture enhances network resilience, simplifies management procedures and supports network policy enforcement. However, it is vulnerable to new attack vectors that can target the controller. Current security solutions rely on traditional measures such as firewalls or intrusion detection systems (IDS). An IDS can use two different approaches: signature-based or anomaly-based detection. The signature-based approach is incapable of detecting zero-day attacks, while anomaly-based detection has high false-positive and false-negative alarm rates. Inaccuracies related to false-positive attacks may have significant consequences, specifically from threats that target the controller. Thus, improving the accuracy of the IDS will enhance controller security and, subsequently, SDN security. A centralised network entity that controls the entire network is a primary target for intruders. The controller is located at a central point between the applications and the data plane and has two interfaces for plane communications, known as northbound and southbound, respectively. Communications between the controller, the application and data planes are prone to various types of attacks, such as eavesdropping and tampering. The controller software is vulnerable to attacks such as buffer and stack overflow, which enable remote code execution that can result in attackers taking control of the entire network. Additionally, traditional network attacks are more destructive. This thesis introduces a threat detection approach aimed at improving the accuracy and efficiency of the IDS, which is essential for controller security. To evaluate the effectiveness of the proposed framework, an empirical study of SDN controller security was conducted to identify, formalise and quantify security concerns related to SDN architecture. The study explored the threats related to SDN architecture, specifically threats originating from the existence of the control plane. The framework comprises two stages, involving the use of deep learning (DL) algorithms and clustering algorithms, respectively. DL algorithms were used to reduce the dimensionality of inputs, which were forwarded to clustering algorithms in the second stage. Features were compressed to a single value, simplifying and improving the performance of the clustering algorithm. Rather than using the output of the neural network, the framework presented a unique technique for dimensionality reduction that used a single value—reconstruction error—for the entire input record. The use of a DL algorithm in the pre-training stage contributed to solving the problem of dimensionality related to k-means clustering. Using unsupervised algorithms facilitated the discovery of new attacks. Further, this study compares generative energy-based models (restricted Boltzmann machines) with non-probabilistic models (autoencoders). The study implements TensorFlow in four scenarios. Simulation results were statistically analysed using a confusion matrix, which was evaluated and compared with similar related works. The proposed framework, which was adapted from existing similar approaches, resulted in promising outcomes and may provide a robust prospect for deployment in modern threat detection systems in SDN. The framework was implemented using TensorFlow and was benchmarked to the KDD99 dataset. Simulation results showed that the use of the DL algorithm to reduce dimensionality significantly improved detection accuracy and reduced false-positive and false-negative alarm rates. Extensive simulation studies on benchmark tasks demonstrated that the proposed framework consistently outperforms all competing approaches. This improvement is a further step towards the development of a reliable IDS to enhance the security of SDN controllers

    Design and optimization of medical information services for decision support

    Get PDF

    Perception of Risks and Usefulness of Smart Video Surveillance Systems

    Get PDF
    The number of video cameras in public places increases due to different reasons such as detecting dangers (e.g., thefts, robberies, terrorist attacks) and security breaches in crowds. The application of video surveillance systems is sometimes evaluated ambivalently; therefore, the presented study focuses on factors influencing the acceptance of a privacy-friendly, smart video surveillance system. Overall, 216 persons aged between 18 and 81 years participated in an online survey. In terms of the perceived usefulness, there are significant interactions of public spaces Ă— gender and public spaces Ă— time of day. In addition, the assessment of different privacy levels of a video surveillance system differ significantly in terms of perceived risk. Interestingly, men rate the risk concerning their own privacy significantly higher than women do. Participants rate the presented system as fairly useful and slightly risky for their own privacy. The findings of the presented exploratory study provide insight into how people perceive smart video surveillance. These findings have the potential to support the conditions of the use of smart video surveillance systems and to address the possibly affected individuals
    • …
    corecore