5,140 research outputs found

    Local Electronic Correlation at the Two-Particle Level

    Full text link
    Electronic correlated systems are often well described by dynamical mean field theory (DMFT). While DMFT studies have mainly focused hitherto on one-particle properties, valuable information is also enclosed into local two-particle Green's functions and vertices. They represent the main ingredient to compute momentum-dependent response functions at the DMFT level and to treat non-local spatial correlations at all length scales by means of diagrammatic extensions of DMFT. The aim of this paper is to present a DMFT analysis of the local reducible and irreducible two-particle vertex functions for the Hubbard model in the context of an unified diagrammatic formalism. An interpretation of the observed frequency structures is also given in terms of perturbation theory, of the comparison with the atomic limit, and of the mapping onto the attractive Hubbard model.Comment: 29 pages, 26 Figures. Accepted for publication in Phys. Rev.

    Symmetry classification of energy bands in graphene and silicene

    Full text link
    We present the results of the symmetry classification of the electron energy bands in graphene and silicene using group theory algebra and the tight--binding approximation. The analysis is performed both in the absence and in the presence of the spin-orbit coupling. We also discuss the bands merging in the Brillouin zone symmetry points and the conditions for the latter to become Dirac points.Comment: LaTeX, 6 pages, 2 eps Figures. A Figure and a citation were added. Accepted for publication in Graphen

    Self-consistent Green's functions formalism with three-body interactions

    Full text link
    We extend the self-consistent Green's functions formalism to take into account three-body interactions. We analyze the perturbative expansion in terms of Feynman diagrams and define effective one- and two-body interactions, which allows for a substantial reduction of the number of diagrams. The procedure can be taken as a generalization of the normal ordering of the Hamiltonian to fully correlated density matrices. We give examples up to third order in perturbation theory. To define nonperturbative approximations, we extend the equation of motion method in the presence of three-body interactions. We propose schemes that can provide nonperturbative resummation of three-body interactions. We also discuss two different extensions of the Koltun sum rule to compute the ground state of a many-body system.Comment: 26 pages, 19 figure

    Best possible rates of distribution of dense lattice orbits in homogeneous spaces

    Get PDF
    The present paper establishes upper and lower bounds on the speed of approximation in a wide range of natural Diophantine approximation problems. The upper and lower bounds coincide in many cases, giving rise to optimal results in Diophantine approximation which were inaccessible previously. Our approach proceeds by establishing, more generally, upper and lower bounds for the rate of distribution of dense orbits of a lattice subgroup Γ\Gamma in a connected Lie (or algebraic) group GG, acting on suitable homogeneous spaces G/HG/H. The upper bound is derived using a quantitative duality principle for homogeneous spaces, reducing it to a rate of convergence in the mean ergodic theorem for a family of averaging operators supported on HH and acting on G/ΓG/\Gamma. In particular, the quality of the upper bound on the rate of distribution we obtain is determined explicitly by the spectrum of HH in the automorphic representation on L2(ΓG)L^2(\Gamma\setminus G). We show that the rate is best possible when the representation in question is tempered, and show that the latter condition holds in a wide range of examples

    Marginal and Relevant Deformations of N=4 Field Theories and Non-Commutative Moduli Spaces of Vacua

    Get PDF
    We study marginal and relevant supersymmetric deformations of the N=4 super-Yang-Mills theory in four dimensions. Our primary innovation is the interpretation of the moduli spaces of vacua of these theories as non-commutative spaces. The construction of these spaces relies on the representation theory of the related quantum algebras, which are obtained from F-term constraints. These field theories are dual to superstring theories propagating on deformations of the AdS_5xS^5 geometry. We study D-branes propagating in these vacua and introduce the appropriate notion of algebraic geometry for non-commutative spaces. The resulting moduli spaces of D-branes have several novel features. In particular, they may be interpreted as symmetric products of non-commutative spaces. We show how mirror symmetry between these deformed geometries and orbifold theories follows from T-duality. Many features of the dual closed string theory may be identified within the non-commutative algebra. In particular, we make progress towards understanding the K-theory necessary for backgrounds where the Neveu-Schwarz antisymmetric tensor of the string is turned on, and we shed light on some aspects of discrete anomalies based on the non-commutative geometry.Comment: 60 pages, 4 figures, JHEP format, amsfonts, amssymb, amsmat

    Stability of self-consistent solutions for the Hubbard model at intermediate and strong coupling

    Full text link
    We present a general framework how to investigate stability of solutions within a single self-consistent renormalization scheme being a parquet-type extension of the Baym-Kadanoff construction of conserving approximations. To obtain a consistent description of one- and two-particle quantities, needed for the stability analysis, we impose equations of motion on the one- as well on the two-particle Green functions simultaneously and introduce approximations in their input, the completely irreducible two-particle vertex. Thereby we do not loose singularities caused by multiple two-particle scatterings. We find a complete set of stability criteria and show that each instability, singularity in a two-particle function, is connected with a symmetry-breaking order parameter, either of density type or anomalous. We explicitly study the Hubbard model at intermediate coupling and demonstrate that approximations with static vertices get unstable before a long-range order or a metal-insulator transition can be reached. We use the parquet approximation and turn it to a workable scheme with dynamical vertex corrections. We derive a qualitatively new theory with two-particle self-consistence, the complexity of which is comparable with FLEX-type approximations. We show that it is the simplest consistent and stable theory being able to describe qualitatively correctly quantum critical points and the transition from weak to strong coupling in correlated electron systems.Comment: REVTeX, 26 pages, 12 PS figure
    corecore