1,109 research outputs found

    Quantum Reverse Shannon Theorem

    Get PDF
    Dual to the usual noisy channel coding problem, where a noisy (classical or quantum) channel is used to simulate a noiseless one, reverse Shannon theorems concern the use of noiseless channels to simulate noisy ones, and more generally the use of one noisy channel to simulate another. For channels of nonzero capacity, this simulation is always possible, but for it to be efficient, auxiliary resources of the proper kind and amount are generally required. In the classical case, shared randomness between sender and receiver is a sufficient auxiliary resource, regardless of the nature of the source, but in the quantum case the requisite auxiliary resources for efficient simulation depend on both the channel being simulated, and the source from which the channel inputs are coming. For tensor power sources (the quantum generalization of classical IID sources), entanglement in the form of standard ebits (maximally entangled pairs of qubits) is sufficient, but for general sources, which may be arbitrarily correlated or entangled across channel inputs, additional resources, such as entanglement-embezzling states or backward communication, are generally needed. Combining existing and new results, we establish the amounts of communication and auxiliary resources needed in both the classical and quantum cases, the tradeoffs among them, and the loss of simulation efficiency when auxiliary resources are absent or insufficient. In particular we find a new single-letter expression for the excess forward communication cost of coherent feedback simulations of quantum channels (i.e. simulations in which the sender retains what would escape into the environment in an ordinary simulation), on non-tensor-power sources in the presence of unlimited ebits but no other auxiliary resource. Our results on tensor power sources establish a strong converse to the entanglement-assisted capacity theorem.Comment: 35 pages, to appear in IEEE-IT. v2 has a fixed proof of the Clueless Eve result, a new single-letter formula for the "spread deficit", better error scaling, and an improved strong converse. v3 and v4 each make small improvements to the presentation and add references. v5 fixes broken reference

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,…,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,…,aK∈Fna_1,\ldots,a_K \in {\mathbb F}^n, βˆ™\bullet the Prover sends the Verifier the values C(a1),…,C(aK)∈FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(Kβ‹…d)\tilde{O}(K \cdot d) length, and βˆ™\bullet the Verifier tosses poly(log⁑(dK∣F∣/Ξ΅))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(Kβ‹…(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than Ξ΅\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page
    • …
    corecore