12,305 research outputs found

    Performance analysis of pre-equalized multilevel partial response schemes

    Get PDF
    In order to achieve high speed on electrical interconnects, channel attenuation at high frequencies must be dealt with by proper transceiver design. In this paper we investigate finite-complexity MMSE pre-equalization under an average transmit power constraint, to compensate for channel distortion in the case of both full-response and precoded partial response signaling with L-PAM mapping, and consider the resulting error performance for symbol-by-symbol detection and sequence detection. For a representative electrical interconnect, we point out that the constellation size (2-PAM or 4-PAM), the type of signaling (full response or partial response), the detection method (symbol-by-symbol detection or sequence detection) and the number of pre-equalizer taps should be carefully selected in order to achieve satisfactory error performance at high data rates. For several scenarios, precoded duobinary 4-PAM is found to yield the best error performance for given average transmit power

    Challenges in Polybinary Modulation for Bandwidth Limited Optical Links

    Get PDF
    Optical links using traditional modulation formats are reaching a plateau in terms of capacity, mainly due to bandwidth limitations in the devices employed at the transmitter and receivers. Advanced modulation formats, which boost the spectral efficiency, provide a smooth migration path towards effectively increase the available capacity. Advanced modulation formats however require digitalization of the signals and digital signal processing blocks to both generate and recover the data. There is therefore a trade-off in terms of efficiency gain vs complexity. Polybinary modulation, a generalized form of partial response modulation, employs simple codification and filtering at the transmitter to drastically increase the spectral efficiency. At the receiver side, polybinary modulation requires low complexity direct detection and very little digital signal processing. This paper provides an overview of the current research status of the key building blocks in polybinary systems. The results clearly show how polybinary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency

    The Recommendation Architecture: Lessons from Large-Scale Electronic Systems Applied to Cognition

    Get PDF
    A fundamental approach of cognitive science is to understand cognitive systems by separating them into modules. Theoretical reasons are described which force any system which learns to perform a complex combination of real time functions into a modular architecture. Constraints on the way modules divide up functionality are also described. The architecture of such systems, including biological systems, is constrained into a form called the recommendation architecture, with a primary separation between clustering and competition. Clustering is a modular hierarchy which manages the interactions between functions on the basis of detection of functionally ambiguous repetition. Change to previously detected repetitions is limited in order to maintain a meaningful, although partially ambiguous context for all modules which make use of the previously defined repetitions. Competition interprets the repetition conditions detected by clustering as a range of alternative behavioural recommendations, and uses consequence feedback to learn to select the most appropriate recommendation. The requirements imposed by functional complexity result in very specific structures and processes which resemble those of brains. The design of an implemented electronic version of the recommendation architecture is described, and it is demonstrated that the system can heuristically define its own functionality, and learn without disrupting earlier learning. The recommendation architecture is compared with a range of alternative cognitive architectural proposals, and the conclusion reached that it has substantial potential both for understanding brains and for designing systems to perform cognitive functions

    Multirate Frequency Transformations: Wideband AM-FM Demodulation with Applications to Signal Processing and Communications

    Get PDF
    The AM-FM (amplitude & frequency modulation) signal model finds numerous applications in image processing, communications, and speech processing. The traditional approaches towards demodulation of signals in this category are the analytic signal approach, frequency tracking, or the energy operator approach. These approaches however, assume that the amplitude and frequency components are slowly time-varying, e.g., narrowband and incur significant demodulation error in the wideband scenarios. In this thesis, we extend a two-stage approach towards wideband AM-FM demodulation that combines multirate frequency transformations (MFT) enacted through a combination of multirate systems with traditional demodulation techniques, e.g., the Teager-Kasiser energy operator demodulation (ESA) approach to large wideband to narrowband conversion factors. The MFT module comprises of multirate interpolation and heterodyning and converts the wideband AM-FM signal into a narrowband signal, while the demodulation module such as ESA demodulates the narrowband signal into constituent amplitude and frequency components that are then transformed back to yield estimates for the wideband signal. This MFT-ESA approach is then applied to the various problems of: (a) wideband image demodulation and fingerprint demodulation, where multidimensional energy separation is employed, (b) wideband first-formant demodulation in vowels, and (c) wideband CPM demodulation with partial response signaling, to demonstrate its validity in both monocomponent and multicomponent scenarios as an effective multicomponent AM-FM signal demodulation and analysis technique for image processing, speech processing, and communications based applications

    A study of multilevel partial response signalling for transmission in a basic supergroup bandwidth

    Get PDF
    Includes bibliographical references.The work in this thesis is primarily directed toward the design, construction and testing of an experimental multilevel partial response signalling baseband system. The system will find practical application in existing frequency division multiplexed-frequency modulated microwave links. The basic supergroup bandwidth of these links is 240 kHz. The design requires a transmission rate of 1.024 Mb/s in this bandwidth. Class-4 15 partial response signalling is the coding technique suitable to achieve this. A pilot tone scheme is used to facilitate symbol timing recovery at the demodulator. A sixth order Butterworth low pass filter approximates the ideal raised-cosine Nyquist channel. A theoretical discussion on impairments caused by deviation from this channel is given. Since the experimental system was non-ideal, it produced a degradation in the channel signal to noise ratio. This degradation, coupled with other factors, showed that further development was necessary for the system to be suitable for connection into an existing microwave link

    Fault tolerant data management system

    Get PDF
    Described in detail are: (1) results obtained in modifying the onboard data management system software to a multiprocessor fault tolerant system; (2) a functional description of the prototype buffer I/O units; (3) description of modification to the ACADC and stimuli generating unit of the DTS; and (4) summaries and conclusions on techniques implemented in the rack and prototype buffers. Also documented is the work done in investigating techniques of high speed (5 Mbps) digital data transmission in the data bus environment. The application considered is a multiport data bus operating with the following constraints: no preferred stations; random bus access by all stations; all stations equally likely to source or sink data; no limit to the number of stations along the bus; no branching of the bus; and no restriction on station placement along the bus
    corecore