36 research outputs found

    Scalable Remote Rendering using Synthesized Image Quality Assessment

    Get PDF
    Depth-image-based rendering (DIBR) is widely used to support 3D interactive graphics on low-end mobile devices. Although it reduces the rendering cost on a mobile device, it essentially turns such a cost into depth image transmission cost or bandwidth consumption, inducing performance bottleneck to a remote rendering system. To address this problem, we design a scalable remote rendering framework based on synthesized image quality assessment. Specially, we design an efficient synthesized image quality metric based on Just Noticeable Distortion (JND), properly measuring human perceived geometric distortions in synthesized images. Based on this, we predict quality-aware reference viewpoints, with viewpoint intervals optimized by the JND-based metric. An adaptive transmission scheme is also developed to control depth image transmission based on perceived quality and network bandwidth availability. Experiment results show that our approach effectively reduces transmission frequency and network bandwidth consumption with perceived quality on mobile devices maintained. A prototype system is implemented to demonstrate the scalability of our proposed framework to multiple clients

    Livrable D4.2 of the PERSEE project : Représentation et codage 3D - Rapport intermédiaire - Définitions des softs et architecture

    Get PDF
    51Livrable D4.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.2 du projet. Son titre : Représentation et codage 3D - Rapport intermédiaire - Définitions des softs et architectur

    No-reference depth map quality evaluation model based on depth map edge confidence measurement in immersive video applications

    Get PDF
    When it comes to evaluating perceptual quality of digital media for overall quality of experience assessment in immersive video applications, typically two main approaches stand out: Subjective and objective quality evaluation. On one hand, subjective quality evaluation offers the best representation of perceived video quality assessed by the real viewers. On the other hand, it consumes a significant amount of time and effort, due to the involvement of real users with lengthy and laborious assessment procedures. Thus, it is essential that an objective quality evaluation model is developed. The speed-up advantage offered by an objective quality evaluation model, which can predict the quality of rendered virtual views based on the depth maps used in the rendering process, allows for faster quality assessments for immersive video applications. This is particularly important given the lack of a suitable reference or ground truth for comparing the available depth maps, especially when live content services are offered in those applications. This paper presents a no-reference depth map quality evaluation model based on a proposed depth map edge confidence measurement technique to assist with accurately estimating the quality of rendered (virtual) views in immersive multi-view video content. The model is applied for depth image-based rendering in multi-view video format, providing comparable evaluation results to those existing in the literature, and often exceeding their performance

    Método de selección automática de algoritmos de correspondencia estéreo en ausencia de ground truth

    Get PDF
    La correspondencia estéreo es un campo ampliamente estudiado que ha recibido una atención notable en las últimas tres décadas. Es posible encontrar en la literatura un número considerable de propuestas para resolver el problema de correspondencia estéreo. En contraste, las propuestas para evaluar cuantitativamente la calidad de los mapas de disparidad obtenidos a partir de los algoritmos de correspondencia estéreo son relativamente escasas. La selección de un algoritmo de correspondencia estéreo y sus respectivos parámetros para un caso de aplicación particular es un problema no trivial dada la dependencia entre la calidad de la estimación de un mapa de disparidad y el contenido de la escena de interés. Este trabajo de investigación propone una estrategia de selección de algoritmos de correspondencia estéreo a partir de los mapas de disparidad estimados, por medio de un proceso de evaluación en ausencia de ground truth. El método propuesto permitiría a un sistema de visión estéreo adaptarse a posibles cambios en las escenas al ser aplicados a problemas en el mundo real. Esta investigación es de interés para investigadores o ingenieros aplicando visión estéreo en campos de aplicación como la industria.Abstract: The stereo correspondence problem has received significant attention in literature during approximately three decades. A plethora of stereo correspondence algorithms can be found in literature. In contrast, the amount of methods to objectively and quantitatively evaluate the accuracy of disparity maps estimated from stereo correspondence algorithms is relatively low. The application of stereo correspondence algorithms on real world applications is not a trivial problem, mainly due to the existing dependence between the estimated disparity map quality, the algorithms parameter definition and the contents on the assessed scene. In this research a stereo correspondence algorithms selection method is proposed by assessing the quality of estimated disparity maps in absence of ground truth. The proposed method could be used in a stereo vision to increase the system robustness by adapting it to possible changes in real world applications. The contribution of this work is relevant to researchers and engineers applying stereo vision in fields such as industryMaestrí

    Variable Block Size Motion Compensation In The Redundant Wavelet Domain

    Get PDF
    Video is one of the most powerful forms of multimedia because of the extensive information it delivers. Video sequences are highly correlated both temporally and spatially, a fact which makes the compression of video possible. Modern video systems employ motion estimation and motion compensation (ME/MC) to de-correlate a video sequence temporally. ME/MC forms a prediction of the current frame using the frames which have been already encoded. Consequently, one needs to transmit the corresponding residual image instead of the original frame, as well as a set of motion vectors which describe the scene motion as observed at the encoder. The redundant wavelet transform (RDWT) provides several advantages over the conventional wavelet transform (DWT). The RDWT overcomes the shift invariant problem in DWT. Moreover, RDWT retains all the phase information of wavelet coefficients and provides multiple prediction possibilities for ME/MC in wavelet domain. The general idea of variable size block motion compensation (VSBMC) technique is to partition a frame in such a way that regions with uniform translational motions are divided into larger blocks while those containing complicated motions into smaller blocks, leading to an adaptive distribution of motion vectors (MV) across the frame. The research proposed new adaptive partitioning schemes and decision criteria in RDWT that utilize more effectively the motion content of a frame in terms of various block sizes. The research also proposed a selective subpixel accuracy algorithm for the motion vector using a multiband approach. The selective subpixel accuracy reduces the computations produced by the conventional subpixel algorithm while maintaining the same accuracy. In addition, the method of overlapped block motion compensation (OBMC) is used to reduce blocking artifacts. Finally, the research extends the applications of the proposed VSBMC to the 3D video sequences. The experimental results obtained here have shown that VSBMC in the RDWT domain can be a powerful tool for video compression

    3D coding tools final report

    Get PDF
    Livrable D4.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.3 du projet. Son titre : 3D coding tools final repor

    Multi-scale metric for objective synthesized image quality assessment for FTV

    No full text
    Основни допринос ове докторске дисертације је развој алгоритама за објективну процену визуелног квалитета слике синтетизоване применом ДИБР (Depth Image Based Rendering) техника које узрокују неуниформна изобличења у области ивица. Применом нелинеарних морфолошких филтара у мултирезолуционој декомпозицији слика код израчунавања предложене метрике, важне геометријске информације као што су ивице су добро очуване без помака и замућења у сликама на различитим скалама мултирезолуционе репрезентације. Израчунавањем МСЕ по подопсезима који садрже ивице, пиксел по пиксел, прецизно се мери разлика две мултирезолуционе репрезентације. Тако се највећи значај у процени квалитета додељује области ивица. Процене предложене метрике се добро поклапају са субјективним оценама.Osnovni doprinos ove doktorske disertacije je razvoj algoritama za objektivnu procenu vizuelnog kvaliteta slike sintetizovane primenom DIBR (Depth Image Based Rendering) tehnika koje uzrokuju neuniformna izobličenja u oblasti ivica. Primenom nelinearnih morfoloških filtara u multirezolucionoj dekompoziciji slika kod izračunavanja predložene metrike, važne geometrijske informacije kao što su ivice su dobro očuvane bez pomaka i zamućenja u slikama na različitim skalama multirezolucione reprezentacije. Izračunavanjem MSE po podopsezima koji sadrže ivice, piksel po piksel, precizno se meri razlika dve multirezolucione reprezentacije. Tako se najveći značaj u proceni kvaliteta dodeljuje oblasti ivica. Procene predložene metrike se dobro poklapaju sa subjektivnim ocenama.The main contribution of this doctoral thesis is the development of algorithms for objective DIBR-synthesized view quality assessment. DIBR algorithms introduce nonuniform geometric distortions affecting the edge coherency in the synthesized images.The non-linear morphological filters used in multi-scale image decompositions of the proposed metric maintain important geometric information such as edges across different resolution levels.Calculating MSE pixel-by-pixel through subbands in which the edges are extracted, the difference of the two multiresolution representations, the reference and the synthesized image, is precisely measured. In that way the importance of edge areas which are prone to synthesis artifacts is emphasized in the image quality assessment. The proposed metric has very good agreement with human judgment

    Compression and Subjective Quality Assessment of 3D Video

    Get PDF
    In recent years, three-dimensional television (3D TV) has been broadly considered as the successor to the existing traditional two-dimensional television (2D TV) sets. With its capability of offering a dynamic and immersive experience, 3D video (3DV) is expected to expand conventional video in several applications in the near future. However, 3D content requires more than a single view to deliver the depth sensation to the viewers and this, inevitably, increases the bitrate compared to the corresponding 2D content. This need drives the research trend in video compression field towards more advanced and more efficient algorithms. Currently, the Advanced Video Coding (H.264/AVC) is the state-of-the-art video coding standard which has been developed by the Joint Video Team of ISO/IEC MPEG and ITU-T VCEG. This codec has been widely adopted in various applications and products such as TV broadcasting, video conferencing, mobile TV, and blue-ray disc. One important extension of H.264/AVC, namely Multiview Video Coding (MVC) was an attempt to multiple view compression by taking into consideration the inter-view dependency between different views of the same scene. This codec H.264/AVC with its MVC extension (H.264/MVC) can be used for encoding either conventional stereoscopic video, including only two views, or multiview video, including more than two views. In spite of the high performance of H.264/MVC, a typical multiview video sequence requires a huge amount of storage space, which is proportional to the number of offered views. The available views are still limited and the research has been devoted to synthesizing an arbitrary number of views using the multiview video and depth map (MVD). This process is mandatory for auto-stereoscopic displays (ASDs) where many views are required at the viewer side and there is no way to transmit such a relatively huge number of views with currently available broadcasting technology. Therefore, to satisfy the growing hunger for 3D related applications, it is mandatory to further decrease the bitstream by introducing new and more efficient algorithms for compressing multiview video and depth maps. This thesis tackles the 3D content compression targeting different formats i.e. stereoscopic video and depth-enhanced multiview video. Stereoscopic video compression algorithms introduced in this thesis mostly focus on proposing different types of asymmetry between the left and right views. This means reducing the quality of one view compared to the other view aiming to achieve a better subjective quality against the symmetric case (the reference) and under the same bitrate constraint. The proposed algorithms to optimize depth-enhanced multiview video compression include both texture compression schemes as well as depth map coding tools. Some of the introduced coding schemes proposed for this format include asymmetric quality between the views. Knowing that objective metrics are not able to accurately estimate the subjective quality of stereoscopic content, it is suggested to perform subjective quality assessment to evaluate different codecs. Moreover, when the concept of asymmetry is introduced, the Human Visual System (HVS) performs a fusion process which is not completely understood. Therefore, another important aspect of this thesis is conducting several subjective tests and reporting the subjective ratings to evaluate the perceived quality of the proposed coded content against the references. Statistical analysis is carried out in the thesis to assess the validity of the subjective ratings and determine the best performing test cases
    corecore