394 research outputs found

    Design and development of a technological demonstrator for the study of high dynamics GNSS receivers

    Full text link
    [ES] En el marco de esta tesis se van a estudiar, principalmente, los efectos del movimiento de alta dinámica en receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término alta dinámica es un término utilizado para referirse al movimiento de los vehículos en los que van embarcados receptores GNSS, los cuales se mueven lo suficientemente rápido como para causar un gran desplazamiento en frecuencia de la portadora debido al efecto Doppler. Se identificarán los problemas inherentes a este tipo de entornos y se estudiarán y propondrán soluciones. Para poder efectuar el estudio de estos fenómenos, se diseñará un demostrador tecnológico (conjunto de hardware y software para prueba y prototipado de tecnologías) en el que desarrollar el estudio de los casos de interés. Con el fin de trabajar en un entorno repetible, se utilizará un generador de señal GNSS. La señal generada se traslada a un receptor de radiofrecuencia definido por software, Software Defined Radio (SDR). Este tipo de receptor únicamente se encarga de digitalizar la señal de entrada y de llevar las muestras digitales a un ordenador, de modo que todo el procesado de señal se implementa en dicho ordenador. Este esquema de trabajo es ideal habida cuenta de su simplicidad y flexibilidad. Dicha flexibilidad conlleva la posibilidad de sintonizar el demostrador para poder estudiar una amplia gama de arquitecturas de receptor GNSS. Una vez se haya ensamblado el demostrador, se comprobará su correcto funcionamiento en escenarios conocidos usando los algoritmos más utilizados a día de hoy en receptores GNSS. Asegurado el correcto funcionamiento, se comparará el rendimiento de algoritmos de referencia con los algoritmos a estudiar y se extraerán conclusiones.[CA] En aquest treball s'estudiaran, principalment, els efectes del moviment d'alta dinámica en receptors de Navegació per Satèl.lit GNSS (Global Navigation Satellite System). La denominació alta dinámica, s'utilitza per a descriure el moviment dels vehicles dins dels quals hi han receptors GNSS. El moviment d'aquests vehicles és suficientment ràpid com per a causar un gran desplaçament en freqüència de la freqüència portadora. Aquest desplaçament és consqüència de l'efecte Doppler. S'identificaran els problemes inherents d'aquest tipus de entorns GNSS i es propsararàn solucions. Per a estudiar l'efecte de l'alta dinàmica, es dissenyarà un demostrador tecnològic (conjunt de maquinari i software per a proves i prototipat de tecnologies) en que es pot desenvolupar l'estudi dels casos d'interès. Amb l'objectiu d'aconseguir treballar en un entorn repetible s'utilitzarà un generador de senyal GNSS. El senyal es processarà mitjançant un receptor SDR (Software Defined Radio). Aquest tipus de receptor s'encarrega del processat que fa un receptor GNSS en un PC. Aquesta filosofia de treball és idónia per la seua flexibilitat i simplicitat. Quan s'haja ensamblat el demostrador, és comprovarà el seu correct funcionament en escenaris de prova utilitzant els algoritmes implementats en receptors GNSS comercials. En aquest moment, el demostrador estarà preparat per a estudiar el casos d'alta dinàmica, que és l'objectiu fonamental d'aquest treball.[EN] The study of the effects of the high dynamics on Global Navigation Satellite System (GNSS) receivers constitute the main matter of study in this work. The term high dynamics refers to the movement of vehicles that carry GNSS embedded receivers, which move fast enough to generate a large carrier frequency drift caused by the Doppler effect. The problems linked to these environments will be characterized and solutions to counteract possible signal impairments will be discussed. In order to correctly characterize these problems, a technological demonstrator (set of hardware components interacting with software tools enabling fast prototyping) will be designed and constructed. Using this technological demonstrator, different case studies will be developed. With the aim of achieving experimental repeatability, a GNSS signal generator will be used. The generated GNSS signal is fed to a Software Defined Radio (SDR) GNSS receiver. This receiver type is in charge of digitizing the analog RF signal and carrying the resulting samples to a computer in which signal processing tasks implementing the functions of GNSS receivers, take place. The main advantage linked to the usage of this work scheme is that by changing the software part, different receiver architectures can be implemented in a simple manner. Furthermore, by taking advantage of the flexible architecture it is possible to tune the detector in such a manner that it is possible to implement many different architecture types. Once the technological demonstrator is assembled, tests to assure its correct operation will be conducted by performing comparisons with the behaviour of well-known GNSS receivers in known scenarios. Later on, comparative tests using signals from high dynamics scenarios will take place. Insight and analysis of comparative performance will be given.Alcaide Guillén, C. (2019). Design and development of a technological demonstrator for the study of high dynamics GNSS receivers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/131697TESI

    DVB-T Positioning with a One Shot Receiver

    Get PDF
    In this paper a one shot receiver for DVB-T positioning is presented. DVB-T SFN signals can be used as Signals-of-Opportunity in urban environment to assist GNSS in case the GNSS-only positioning shows degraded performance. The normal mechanism of DVB-T positioning involves a tracking stage to refine the coarse delay estimation obtained by the acquisition stage. However due to the high SNR of DVB-T signals, the delay estimation can be refined by some simple interpolation methods with lower complexity and power consumption. Two different interpolation methods, linear interpolation and sinc interpolation, are analysed in the paper. Simulation results show that the one shot receiver proposed in this paper behaves as a tracking-based receiver, but exhibits a lower complexit

    FPGA-Based Software GNSS Receiver Design for Satellite Applications

    Get PDF
    Global Navigation Satellite System (GNSS) receiver technology has tremendous scope for satellite applications such as radio occultation, precise orbit determination and reflectometry. Spaceborne GNSS receivers are characterised by low power requirements, high processing speed and radiation resistant electronic components. Such sophisticated receivers, also called hardware GNSS receivers, are fabricated for specific applications and hence lack design flexibility. On the other hand, a software GNSS receiver allows easy design modifications without any hardware component replacement. Software receivers employ reconfigurable hardware elements called Field Programmable Gate Arrays (FPGAs). In this research, a low-power, low-cost software GNSS receiver has been designed and developed using a combination of a microprocessor and FPGA (System-on-Chip or SoC). The developed software GNSS receiver is capable of detecting GPS satellites, tracking them and computing receiver position estimates. Efficient task partitioning is achieved by implementing operations in both, the FPGA and the microprocessor. Also demonstrated is the improvement of processing speed by 20% when certain GNSS receiver operations are performed in the FPGA instead of the microprocessor

    Snapshot Estimation Algorithms for GNSS Mass-Market Receivers

    Get PDF
    This thesis resumes the PhD program carried out in the signal processing, satellite positioning and telecommunication fields, within the Navigation, Signal Analysis and Simulation (NavSAS) group, Department of Electronics and Telecommunications (DET) of Politecnico di Torino, in the period going from January 2012 to December 2014. The main topic of the PhD activity is represented by Global Navigation Satellite System (GNSS) receivers core technologies. In particular, it deals with the design, development, test and performance assessment of innovative architectures, techniques, and algorithms for Global Positioning System (GPS) and Galileo receivers, both professional high performance and commercial mass-market. GPS, and in general GNSSs are radio-communication infrastructures, aimed to enable a generic user to compute Position, Velocity and Time (PVT). The signals transmitted by a constellation of satellites are processed by an electronic device, performing trilateration with respect to the satellites, taken as reference points. At least 4 satellites are required to be in Line of Sight (LOS) with the receiver, so as to obtain 4 different signals and to solve the 4 navigation unknowns: latitude, longitude, height and time. Since their first appearance, in the early seventies, GNSS chipsets and devices are gaining a fundamental role in most applications of everyday life, and their global market continues to grow rapidly. In 25 years, GNSS receivers became extremely used worldwide, not only for positioning and navigation purposes, but also for time synchronization, thus spanning an unlimited range of applications, from commercial to scientific, from military to recreational. GNSS mass-market receivers are extremely widespread, produced in very high volume—hundreds of millions just for smartphones and tablets—and sold at a limited price. This variety of applications and possibilities represents the main reason of the continuous growth of the GNSS field: in fact, new systems are emerging beside GPS, such as GLONASS, currently operational and in expansion, Galileo and Beidou. With the latest trends of multi-constellation receivers, the positioning accuracy can greatly improve, as well as its robustness, availability, reliability, but at the expense of a greater complexity and power consumption

    Low power, reduced complexity filtering and improved tracking accuracy for GNSS

    Get PDF
    This thesis addresses the power consumption problems resulting from the advent of multiple GNSS satellite systems which create the need for receivers supporting multi-frequency, multi-constellation GNSS systems. Such a multi-mode receiver requires a substantial amount of signal processing power which translates to increased hardware complexity and higher power dissipation which reduces the battery life of a mobile platform. During the course of the work undertaken, a power analysis tool was developed in order to be able to estimate the hardware utilisation as well as the power consumption of a digital system. By using the power estimation tool developed, it was established that most of the power was dissipated after the Analog to Digital Converter (ADC)by the filters associated with the decimation process. The power dissipation and the hardware complexity of the decimator can be reduced substantially by using a minimum-phase Infinite Impulse Response (IIR) filter. For Global Positioning System (GPS) civilian signals, the use of IIR filters does not deleteriously affect the positional accuracy. However, in the case where an IIR filter was deployed in a GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) receiver, the pseudorange measurements of the receiver varied by up to 200 metres. The work undertaken proposes various methods that overcomes the pseudorange measurement variation and reports on the results that are on par with linear-phase Finite Impulse Response (FIR) filters. The work also proposes a modified tracking loop that is capable of tracking very low Doppler frequencies without decreasing the tracking performance
    • …
    corecore