22 research outputs found

    Reduced-rank adaptive least bit-error-rate detection in hybrid direct-sequence time-hopping ultrawide bandwidth systems

    No full text
    Design of high-efficiency low-complexity detection schemes for ultrawide bandwidth (UWB) systems is highly challenging. This contribution proposes a reduced-rank adaptive multiuser detection (MUD) scheme operated in least bit-errorrate (LBER) principles for the hybrid direct-sequence timehopping UWB (DS-TH UWB) systems. The principal component analysis (PCA)-assisted rank-reduction technique is employed to obtain a detection subspace, where the reduced-rank adaptive LBER-MUD is carried out. The reduced-rank adaptive LBERMUD is free from channel estimation and does not require the knowledge about the number of resolvable multipaths as well as the knowledge about the multipaths’ strength. In this contribution, the BER performance of the hybrid DS-TH UWB systems using the proposed detection scheme is investigated, when assuming communications over UWB channels modeled by the Saleh-Valenzuela (S-V) channel model. Our studies and performance results show that, given a reasonable rank of the detection subspace, the reduced-rank adaptive LBER-MUD is capable of efficiently mitigating the multiuser interference (MUI) and inter-symbol interference (ISI), and achieving the diversity gain promised by the UWB systems

    Transceiver design and system optimization for ultra-wideband communications

    Get PDF
    This dissertation investigates the potential promises and proposes possible solutions to the challenges of designing transceivers and optimizing system parameters in ultra-wideband (UWB) systems. The goal is to provide guidelines for UWB transceiver implementations under constraints by regulation, existing interference, and channel estimation. New UWB pulse shapes are invented that satisfy the Federal Communications Commission spectral mask. Parameters are designed to possibly implement the proposed pulses. A link budget is quantified based on an accurate frequency-dependent path loss calculation to account for variations across the ultra-wide bandwidth of the signal. Achievable information rates are quantified as a function of transmission distance over additive white Gaussian noise and multipath channels under specific UWB constraints: limited power spectral density, specific modulation formats, and a highly dispersive channel. The effect of self-interference (SI) and inter-symbol interference (ISI) on channel capacity is determined, and modulation formats that mitigate against this effect is identified. Spreading gains of familiar UWB signaling formats are evaluated, and UWB signals are proved to be spread spectrum. Conditions are formulated for trading coding gain with spreading gain with only a small impact on performance. Numerical results are examined to demonstrate that over a frequency-selective channel, the spreading gain may be beneficial in reducing the SI and ISI resulting in higher information rates. A reduced-rank adaptive filtering technique is applied to the problem of interference suppression and optimum combining in UWB communications. The reduced-rank combining method, in particular the eigencanceler, is proposed and compared with a minimum mean square error Rake receiver. Simulation results are evaluated to show that the performance of the proposed method is superior to the minimum mean square error when the correlation matrix is estimated from limited data. Impact of channel estimation on UWB system performance is investigated when path delays and path amplitudes are jointly estimated. Cramér-Rao bound (CRB) expressions for the variance of path delay and amplitude estimates are formulated using maximum likelihood estimation. Using the errors obtained from the CRB, the effective signal-to-noise ratio for UWB Rake receivers employing maximum ratio combining (MRC) is devised in the presence of channel path delay and amplitude errors. An exact expression of the bit error rate (BER) for UWB Rake receivers with MRC is derived with imperfect estimates of channel path delays and amplitudes. Further, this analysis is applied to design optimal transceiver parameters. The BER is used as part of a binary symmetric channel and the achievable information rates are evaluated. The optimum power allocation and number of symbols allocated to the pilot are developed with respect to maximizing the information rate. The optimal signal bandwidth to be used for UWB communications is determined in the presence of imperfect channel state information. The number of multipath components to be collected by Rake receivers is designed to optimize performance with non-ideal channel estimation

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    ï»żUltrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden mĂŒssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen FĂ€llen der naheliegende Ansatz, ein kohĂ€renter EmpfĂ€nger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohĂ€renter EmpfĂ€nger zum Einsatz. InkohĂ€rente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgĂŒnstige und robuste Implementierungen möglich sind. Dies trifft vor allem in AnwendungsfĂ€llen wie den von drahtlosen Sensornetzen zu, wo preiswerte GerĂ€te mit langer Batterielaufzeit nötigsind. Dies verringert den fĂŒr die KanalschĂ€tzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenĂŒber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunĂ€chst ein inkohĂ€renter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohĂ€renter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hĂ€ngt von dem Produkt aus der LĂ€nge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohĂ€rentes Combining zu reduzieren und somit die Leistungseffizienz des EmpfĂ€ngers zu steigern, werden verbesserte Combining-Methoden fĂŒr Mehrwegeempfang vorgeschlagen. Ein analoger EmpfĂ€nger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird fĂŒr UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dĂŒnn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel fĂŒr die Code-Auswahl vorgestellt, welche die StabilitĂ€t des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohĂ€rentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohĂ€renter Demodulation. Im Vergleich zum AnalogempfĂ€nger besitzt ein DigitalempfĂ€nger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohĂ€rent und beschrĂ€nkt das inkohĂ€rente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewĂ€hrleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohĂ€renten Combining-Verlust, sonder zeigt auch eine stĂ€rkere Resistenz gegenĂŒber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfĂ€llt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in AbhĂ€ngigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur UnterdrĂŒckung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohĂ€rente EmpfĂ€nger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohĂ€rentem Combining-Verlust und StabilitĂ€t gegenĂŒber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept fĂŒr UWB-Systeme erarbeitet: wahlweise kohĂ€rente oder inkohĂ€rente EmpfĂ€nger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengĂŒnstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung fĂŒr hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die FunktionalitĂ€t des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). ZusĂ€tzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollstĂ€ndig ausnutzen, was sich in verbesserten SchĂ€tzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming

    Measurement-Based Modeling of Wireless Propagation Channels - MIMO and UWB

    Get PDF
    Future wireless systems envision higher speeds and more reliable services but at the same time face challenges in terms of bandwidth being a limited resource. Two promising techniques that can provide an increased throughput without requiring additional bandwidth allocation are multiple-input multiple-output (MIMO) systems and ultra-wideband (UWB) systems. However, the performance of such systems is highly dependent on the properties of the wireless propagation channel, and an understanding of the channel is therefore crucial in the design of future wireless systems. Examples of such systems covered by this thesis are wireless personal area networks (papers I and II), vehicle-to-vehicle communications (paper III), board-to-board communications inside computers (paper IV) and sensor networks for industrial applications (paper V). Typically, channel models are used to evaluate the performance of different transmission and reception schemes. Channel modeling is the focus of this thesis, which contains a collection of papers that analyze and model the behavior of MIMO and UWB propagation channels. Paper I investigates the fading characteristics of wireless personal area networks (PANs), networks that typically involve human influence close to the antenna terminals. Based on extensive channel measurements using irregular antenna arrays, typical properties of PAN propagation channels are discussed and a model for the complete fading of a single link is presented. Paper II extends the model from paper I to a complete MIMO channel model. The paper combines the classical LOS model for MIMO with results from paper I by prescribing different fading statistics and mean power at the different antenna elements. The model is verified against measurement data and the paper also provides a parameterization for an example of a PAN scenario. Paper III presents a geometry-based stochastic MIMO model for vehicle-to-vehicle communications. The most important propagation effects are discussed based on the results from extensive channel measurements, and the modeling approach is motivated by the non-stationary behavior of such channels. The model distinguishes between diffuse contributions and those stemming from interaction with significant objects in the propagation channel, and the observed fading characteristics of the latter are stochastically accounted for in the model. Paper IV gives a characterization of UWB propagation channels inside desktop computer chassis. By studying measurement results from two different computers, it is concluded that the propagation channel only shows minor differences for different computers and positions within the chassis. It is also found out that the interference power produced by the computer is limited to certain subbands, suggesting that multiband UWB systems are more suitable for this type of applications. Paper V describes a UWB channel model based on the first UWB measurements in an industrial environment. Analyzing results from two different factory halls, it is concluded that energy arrives at the receiver in clusters, which motivates the use of a classical multi-cluster model to describe the channel impulse response. Parts of the results from this paper were also used as input to the channel model in the IEEE 802.15.4a UWB standardization work. In summary, the work within this thesis leads to an increased understanding of the behavior of wireless propagation channels for MIMO and UWB systems. By providing three detailed simulation models, two for MIMO and one for UWB, it can thus contribute to a more efficient design of the wireless communications systems of tomorrow

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Ultra Wideband Systems with MIMO

    Full text link

    Contribution Ă  la conception d'un systĂšme de radio impulsionnelle ultra large bande intelligent

    No full text
    Faced with an ever increasing demand of high data-rates and improved adaptability among existing systems, which inturn is resulting in spectrum scarcity, the development of new radio solutions becomes mandatory in order to answer the requirements of these emergent applications. Among the recent innovations in the field of wireless communications,ultra wideband (UWB) has generated significant interest. Impulse based UWB (IR-UWB) is one attractive way of realizing UWB systems, which is characterized by the transmission of sub nanoseconds UWB pulses, occupying a band width up to 7.5 GHz with extremely low power density. This large band width results in several captivating features such as low-complexity low-cost transceiver, ability to overlay existing narrowband systems, ample multipath diversity, and precise ranging at centimeter level due to extremely fine temporal resolution.In this PhD dissertation, we investigate some of the key elements in the realization of an intelligent time-hopping based IR-UWB system. Due to striking resemblance of IR-UWB inherent features with cognitive radio (CR) requirements, acognitive UWB based system is first studied. A CR in its simplest form can be described as a radio, which is aware ofits surroundings and adapts intelligently. As sensing the environment for the availability of resources and then consequently adapting radio’s internal parameters to exploit them opportunistically constitute the major blocks of any CR, we first focus on robust spectrum sensing algorithms and the design of adaptive UWB waveforms for realizing a cognitive UWB radio. The spectrum sensing module needs to function with minimum a-priori knowledge available about the operating characteristics and detect the primary users as quickly as possible. Keeping this in mind, we develop several spectrum sensing algorithms invoking recent results on the random matrix theory, which can provide efficient performance with a few number of samples. Next, we design the UWB waveform using a linear combination of Bsp lines with weight coefficients being optimized by genetic algorithms. This results in a UWB waveform that is spectrally efficient and at the same time adaptable to incorporate the cognitive radio requirements. In the 2nd part of this thesis, some research challenges related to signal processing in UWB systems, namely synchronization and dense multipath channel estimation are addressed. Several low-complexity non-data-aided (NDA) synchronization algorithms are proposed for BPSK and PSM modulations, exploiting either the orthogonality of UWB waveforms or theinherent cyclostationarity of IR-UWB signaling. Finally, we look into the channel estimation problem in UWB, whichis very demanding due to particular nature of UWB channels and at the same time very critical for the coherent Rake receivers. A method based on a joint maximum-likelihood (ML) and orthogonal subspace (OS) approaches is proposed which exhibits improved performance than both of these methods individually.Face Ă  une demande sans cesse croissante de haut dĂ©bit et d’adaptabilitĂ© des systĂšmes existants, qui Ă  son tour se traduit par l’encombrement du spectre, le dĂ©veloppement de nouvelles solutions dans le domaine des communications sans fil devient nĂ©cessaire afin de rĂ©pondre aux exigences des applications Ă©mergentes. Parmi les innovations rĂ©centes dans ce domaine, l’ultra large bande (UWB) a suscitĂ© un vif intĂ©rĂȘt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intĂ©ressante pour rĂ©aliser des systĂšmes UWB, est caractĂ©risĂ©e par la transmission des impulsions de trĂšs courte durĂ©e, occupant une largeur de bande allant jusqu’à 7,5 GHz, avec une densitĂ© spectrale de puissance extrĂȘmement faible. Cette largeur de bande importante permet de rĂ©aliser plusieurs fonctionnalitĂ©s intĂ©ressantes, telles que l’implĂ©mentation Ă  faible complexitĂ© et Ă  coĂ»t rĂ©duit, la possibilitĂ© de se superposer aux systĂšmes Ă  bande Ă©troite, la diversitĂ© spatiale et la localisation trĂšs prĂ©cise de l’ordre centimĂ©trique, en raison de la rĂ©solution temporelle trĂšs fine.Dans cette thĂšse, nous examinons certains Ă©lĂ©ments clĂ©s dans la rĂ©alisation d'un systĂšme IR-UWB intelligent. Nous avons tout d’abord proposĂ© le concept de radio UWB cognitive Ă  partir des similaritĂ©s existantes entre l'IR-UWB et la radio cognitive. Dans sa dĂ©finition la plus simple, un tel systĂšme est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d’abord focalisĂ© notre recherchĂ© sur l’analyse de la disponibilitĂ© des ressources spectrales (spectrum sensing) et la conception d’une forme d’onde UWB adaptative, considĂ©rĂ©es comme deux Ă©tapes importantes dans la rĂ©alisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et dĂ©tecter rapidement les utilisateurs primaires. Nous avons donc dĂ©veloppĂ© de tels algorithmes utilisant des rĂ©sultats rĂ©cents sur la thĂ©orie des matrices alĂ©atoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'Ă©chantillons. Ensuite, nous avons proposĂ© une mĂ©thode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondĂ©ration sont optimisĂ©s par des algorithmes gĂ©nĂ©tiques. Il en rĂ©sulte une forme d'onde UWB qui est spectralement efficace et peut s’adapter pour intĂ©grer les contraintes liĂ©es Ă  la radio cognitive. Dans la 2Ăšme partie de cette thĂšse, nous nous sommes attaquĂ©s Ă  deux autres problĂ©matiques importantes pour le fonctionnement des systĂšmes UWB, Ă  savoir la synchronisation et l’estimation du canal UWB, qui est trĂšs dense en trajets multiples. Ainsi, nous avons proposĂ© plusieurs algorithmes de synchronisation, de faible complexitĂ© et sans sĂ©quence d’apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalitĂ© des formes d'onde UWB ou la cyclostationnaritĂ© inhĂ©rente Ă  la signalisation IR-UWB. Enfin, nous avons travaillĂ© sur l'estimation du canal UWB, qui est un Ă©lĂ©ment critique pour les rĂ©cepteurs Rake cohĂ©rents. Ainsi, nous avons proposĂ© une mĂ©thode d’estimation du canal basĂ©e sur une combinaison de deux approches complĂ©mentaires, le maximum de vraisemblance et la dĂ©composition en sous-espaces orthogonaux,d’amĂ©liorer globalement les performances
    corecore