202 research outputs found

    Fast methods for full-wave electromagnetic simulations of integrated circuit package modules

    Get PDF
    Fast methods for the electromagnetic simulation of integrated circuit (IC) package modules through model order reduction are demonstrated. The 3D integration of multiple functional IC chip/package modules on a single platform gives rise to geometrically complex structures with strong electromagnetic phenomena. This motivates our work on a fast full-wave solution for the analysis of such modules, thus contributing to the reduction in design cycle time without loss of accuracy. Traditionally, fast design approaches consider only approximate electromagnetic effects, giving rise to lumped-circuit models, and therefore may fail to accurately capture the signal integrity, power integrity, and electromagnetic interference effects. As part of this research, a second order frequency domain full-wave susceptance element equivalent circuit (SEEC) model will be extracted from a given structural layout. The model so obtained is suitably reduced using model order reduction techniques. As part of this effort, algorithms are developed to produce stable and passive reduced models of the original system, enabling fast frequency sweep analysis. Two distinct projection-based second order model reduction approaches will be considered: 1) matching moments, and 2) matching Laguerre coefficients, of the original system's transfer function. Further, the selection of multiple frequency shifts in these schemes to produce a globally representative model is also studied. Use of a second level preconditioned Krylov subspace process allows for a memory-efficient way to address large size problems.Ph.D.Committee Chair: Swaminathan Madhavan; Committee Member: Papapolymerou John; Committee Member: Chatterjee Abhijit; Committee Member: Peterson Andrew; Committee Member: Sitaraman Sures

    Transient simulation of complex electronic circuits and systems operating at ultra high frequencies

    Get PDF
    The electronics industry worldwide faces increasingly difficult challenges in a bid to produce ultra-fast, reliable and inexpensive electronic devices. Electronic manufacturers rely on the Electronic Design Automation (EDA) industry to produce consistent Computer A id e d Design (CAD) simulation tools that w ill enable the design of new high-performance integrated circuits (IC), the key component of a modem electronic device. However, the continuing trend towards increasing operational frequencies and shrinking device sizes raises the question of the capability of existing circuit simulators to accurately and efficiently estimate circuit behaviour. The principle objective of this thesis is to advance the state-of-art in the transient simulation of complex electronic circuits and systems operating at ultra high frequencies. Given a set of excitations and initial conditions, the research problem involves the determination of the transient response o f a high-frequency complex electronic system consisting of linear (interconnects) and non-linear (discrete elements) parts with greatly improved efficien cy compared to existing methods and with the potential for very high accuracy in a way that permits an effective trade-off between accuracy and computational complexity. High-frequency interconnect effects are a major cause of the signal degradation encountered b y a signal propagating through linear interconnect networks in the modem IC. Therefore, the development of an interconnect model that can accurately and efficiently take into account frequency-dependent parameters of modem non-uniform interconnect is of paramount importance for state-of-art circuit simulators. Analytical models and models based on a set of tabulated data are investigated in this thesis. Two novel, h igh ly accurate and efficient interconnect simulation techniques are developed. These techniques combine model order reduction methods with either an analytical resonant model or an interconnect model generated from frequency-dependent sparameters derived from measurements or rigorous full-wave simulation. The latter part o f the thesis is concerned with envelope simulation. The complex mixture of profoundly different analog/digital parts in a modern IC gives rise to multitime signals, where a fast changing signal arising from the digital section is modulated by a slower-changing envelope signal related to the analog part. A transient analysis of such a circuit is in general very time-consuming. Therefore, specialised methods that take into account the multi-time nature o f the signal are required. To address this issue, a novel envelope simulation technique is developed. This technique combines a wavelet-based collocation method with a multi-time approach to result in a novel simulation technique that enables the desired trade-off between the required accuracy and computational efficiency in a simple and intuitive way. Furthermore, this new technique has the potential to greatly reduce the overall design cycle

    Passivity enforcement for descriptor systems via matrix pencil perturbation

    Get PDF
    Passivity is an important property of circuits and systems to guarantee stable global simulation. Nonetheless, nonpassive models may result from passive underlying structures due to numerical or measurement error/inaccuracy. A postprocessing passivity enforcement algorithm is therefore desirable to perturb the model to be passive under a controlled error. However, previous literature only reports such passivity enforcement algorithms for pole-residue models and regular systems (RSs). In this paper, passivity enforcement algorithms for descriptor systems (DSs, a superset of RSs) with possibly singular direct term (specifically, D+D T or I-DD T) are proposed. The proposed algorithms cover all kinds of state-space models (RSs or DSs, with direct terms being singular or nonsingular, in the immittance or scattering representation) and thus have a much wider application scope than existing algorithms. The passivity enforcement is reduced to two standard optimization problems that can be solved efficiently. The objective functions in both optimization problems are the error functions, hence perturbed models with adequate accuracy can be obtained. Numerical examples then verify the efficiency and robustness of the proposed algorithms. © 2012 IEEE.published_or_final_versio

    Reduced-order modeling of power electronics components and systems

    Get PDF
    This dissertation addresses the seemingly inevitable compromise between modeling fidelity and simulation speed in power electronics. Higher-order effects are considered at the component and system levels. Order-reduction techniques are applied to provide insight into accurate, computationally efficient component-level (via reduced-order physics-based model) and system-level simulations (via multiresolution simulation). Proposed high-order models, verified with hardware measurements, are, in turn, used to verify the accuracy of final reduced-order models for both small- and large-signal excitations. At the component level, dynamic high-fidelity magnetic equivalent circuits are introduced for laminated and solid magnetic cores. Automated linear and nonlinear order-reduction techniques are introduced for linear magnetic systems, saturated systems, systems with relative motion, and multiple-winding systems, to extract the desired essential system dynamics. Finite-element models of magnetic components incorporating relative motion are set forth and then reduced. At the system level, a framework for multiresolution simulation of switching converters is developed. Multiresolution simulation provides an alternative method to analyze power converters by providing an appropriate amount of detail based on the time scale and phenomenon being considered. A detailed full-order converter model is built based upon high-order component models and accurate switching transitions. Efficient order-reduction techniques are used to extract several lower-order models for the desired resolution of the simulation. This simulation framework is extended to higher-order converters, converters with nonlinear elements, and closed-loop systems. The resulting rapid-to-integrate component models and flexible simulation frameworks could form the computational core of future virtual prototyping design and analysis environments for energy processing units

    Circuit theoretical methods for efficient solution of finite element structural mechanics problems

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent Univ., 1999.Thesis (Ph.D.) -- Bilkent University, 1999.Includes bibliographical references leaves 78-84.Shrinking device dimensions in integrated circuit technology made integrated circuits with millions of components a reality. As a result of this advance, electrical circuit simulators that can handle very large number of components have emerged. These programs use new circuit simulation techniques which approximate the system with reduced order models, and can find solutions accurately and quickly. This study proposes formulating the structural mechanics problems using FEM, and then employing the recent speedup techniques used in circuit simulation. This is obtained by generating an equivalent resistor-inductor-capacitor circuit containing controlled sources. We analyze the circuits with general-purpose circuit simulation programs, HSPICE, and an in-house developed circuit simulation program, MAWE, which makes use of generalized asymptotic waveform evaluation (AWE) technique. AWE is a moment matching technique that has been successfully used in circuit simulation for solutions of large sets of equations. Several examples on the analysis of the displacement distributions in rigid bodies have shown that using circuit simulators instead of conventional FEM solution methods improves simulation speed without a significant loss of accuracy. Pole analysis via congruence transformations (PACT) technique is a recent algorithm used for obtaining lower order models for large circuits. For a further reduction in time, we employed a similar algorithm in structural mechanics problems before obtaining the equivalent circuit. The results are very promising.Ekinci, Ahmet SuatPh.D

    Addressing Computational Complexity of High Speed Distributed Circuits Using Model Order Reduction

    Get PDF
    Advanced in the fabrication technology of integrated circuits (ICs) over the last couple of years has resulted in an unparalleled expansion of the functionality of microelectronic systems. Today’s ICs feature complex deep-submicron mixed-signal designs and have found numerous applications in industry due to their lower manufacturing costs and higher performance levels. The tendency towards smaller feature sizes and increasing clock rates is placing higher demands on signal integrity design by highlighting previously negligible interconnect effects such as distortion, reflection, ringing, delay, and crosstalk. These effects if not predicted in the early stages of the design cycle can severely degrade circuit performance and reliability. The objective of this thesis is to develop new model order reduction (MOR) techniques to minimize the computational complexity of non-linear circuits and electronic systems that have delay elements. MOR techniques provide a mechanism to generate reduced order models from the detailed description of the original modified nodal analysis (MNA) formulation. The following contributions are made in this thesis: 1. The first project presents a methodology for reduction of Partial Element Equivalent Circuit (PEEC) models. PEEC method is widely used in electromagnetic compatibility and signal integrity problems in both the time and frequency domains. The PEEC model with retardation has been applied to 3-D analysis but often result in large and dense matrices, which are computationally expensive to solve. In this thesis, a new moment matching technique based on Multi-order Arnoldi is described to model PEEC networks with retardation. 2. The second project deals with developing an efficient model order reduction algorithm for simulating large interconnect networks with nonlinear elements. The proposed methodology is based on a multidimensional subspace method and uses constraint equations to link the nonlinear elements and biasing sources to the reduced order model. This approach significantly improves the simulation time of distributed nonlinear systems, since additional ports are not required to link the nonlinear elements to the reduced order model, yielding appreciable savings in the size of the reduced order model and computational time. 3. A parameterized reduction technique for nonlinear systems is presented. The proposed method uses multidimensional subspace and variational analysis to capture the variances of design parameters and approximates the weakly nonlinear functions as a Taylor series. An SVD approach is presented to address the efficiency of reduced order model. The proposed methodology significantly improves the simulation time of weakly nonlinear systems since the size of the reduced system is smaller than the original system and a new reduced model is not required each time a design parameter is changed
    • 

    corecore