1,905 research outputs found

    Digital VLSI Architectures for Advanced Channel Decoders

    Get PDF
    Error-correcting codes are strongly adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probes. New and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity. This work aims to focus on Polar codes, which are a recent class of channel codes with the proven ability to reduce decoding error probability arbitrarily small as the block-length is increased, provided that the code rate is less than the capacity of the channel. This property and the recursive code-construction of this algorithms attracted wide interest from the communications community. Hardware architectures with reduced complexity can efficiently implement a polar codes decoder using either successive cancellation approximation or belief propagation algorithms. The latter offers higher throughput at high signal-to-noise ratio thanks to the inherently parallel decision-making capability of such decoder type. A new analysis on belief propagation scheduling algorithms for polar codes and on interconnection structure of the decoding trellis not covered in literature is also presented. It allowed to achieve an hardware implementation that increase the maximum information throughput under belief propagation decoding while also minimizing the implementation complexity

    System Development and VLSI Implementation of High Throughput and Hardware Efficient Polar Code Decoder

    Get PDF
    Polar code is the first channel code which is provable to achieve the Shannon capacity. Additionally, it has a very good performance in terms of low error floor. All these merits make it a potential candidate for the future standard of wireless communication or storage system. Polar code is received increasing research interest these years. However, the hardware implementation of hardware decoder still has not meet the expectation of practical applications, no matter from neither throughput aspect nor hardware efficient aspect. This dissertation presents several system development approaches and hardware structures for three widely known decoding algorithms. These algorithms are successive cancellation (SC), list successive cancellation (LSC) and belief propagation (BP). All the efforts are in order to maximize the throughput meanwhile minimize the hardware cost. Throughput centric successive cancellation (TCSC) decoder is proposed for SC decoding. By introducing the concept of constituent code, the decoding latency is significantly reduced with a negligible decoding performance loss. However, the specifically designed computation unites dramatically increase the hardware cost, and how to handle the conventional polar code sets and constituent codes sets makes the hardware implementation more complicated. By exploiting the natural property of conventional SC decoder, datapaths for decoding constituent codes are compatibly built via computation units sharing technique. This approach does not incur additional hardware cost expect some multiplexer logic, but can significantly increase the decoding throughput. Other techniques such as pre-computing and gate-level optimization are used as well in order to further increase the decoding throughput. A specific designed partial sum generator (PSG) is also investigated in this dissertation. This PSG is hardware efficient and timing compatible with proposed TCSC decoder. Additionally, a polar code construction scheme with constituent codes optimization is also presents. This construction scheme aims to reduce the constituent codes based SC decoding latency. Results show that, compared with the state-of-art decoder, TCSC can achieve at least 60% latency reduction for the codes with length n = 1024. By using Nangate FreePDK 45nm process, TCSC decoder can reach throughput up to 5.81 Gbps and 2.01 Gbps for (1024, 870) and (1024, 512) polar code, respectively. Besides, with the proposed construction scheme, the TCSC decoder generally is able to further achieve at least around 20% latency deduction with an negligible gain loss. Overlapped List Successive Cancellation (OLSC) is proposed for LSC decoding as a design approach. LSC decoding has a better performance than LS decoding at the cost of hardware consumption. With such approach, the l (l > 1) instances of successive cancellation (SC) decoder for LSC with list size l can be cut down to only one. This results in a dramatic reduction of the hardware complexity without any decoding performance loss. Meanwhile, approaches to reduce the latency associated with the pipeline scheme are also investigated. Simulation results show that with proposed design approach the hardware efficiency is increased significantly over the recently proposed LSC decoders. Express Journey Belief Propagation (XJBP) is proposed for BP decoding. This idea origins from extending the constituent codes concept from SC to BP decoding. Express journey refers to the datapath of specific constituent codes in the factor graph, which accelerates the belief information propagation speed. The XJBP decoder is able to achieve 40.6% computational complexity reduction with the conventional BP decoding. This enables an energy efficient hardware implementation. In summary, all the efforts to optimize the polar code decoder are presented in this dissertation, supported by the careful analysis, precise description, extensively numerical simulations, thoughtful discussion and RTL implementation on VLSI design platforms

    System Development and VLSI Implementation of High Throughput and Hardware Efficient Polar Code Decoder

    Get PDF
    Polar code is the first channel code which is provable to achieve the Shannon capacity. Additionally, it has a very good performance in terms of low error floor. All these merits make it a potential candidate for the future standard of wireless communication or storage system. Polar code is received increasing research interest these years. However, the hardware implementation of hardware decoder still has not meet the expectation of practical applications, no matter from neither throughput aspect nor hardware efficient aspect. This dissertation presents several system development approaches and hardware structures for three widely known decoding algorithms. These algorithms are successive cancellation (SC), list successive cancellation (LSC) and belief propagation (BP). All the efforts are in order to maximize the throughput meanwhile minimize the hardware cost. Throughput centric successive cancellation (TCSC) decoder is proposed for SC decoding. By introducing the concept of constituent code, the decoding latency is significantly reduced with a negligible decoding performance loss. However, the specifically designed computation unites dramatically increase the hardware cost, and how to handle the conventional polar code sets and constituent codes sets makes the hardware implementation more complicated. By exploiting the natural property of conventional SC decoder, datapaths for decoding constituent codes are compatibly built via computation units sharing technique. This approach does not incur additional hardware cost expect some multiplexer logic, but can significantly increase the decoding throughput. Other techniques such as pre-computing and gate-level optimization are used as well in order to further increase the decoding throughput. A specific designed partial sum generator (PSG) is also investigated in this dissertation. This PSG is hardware efficient and timing compatible with proposed TCSC decoder. Additionally, a polar code construction scheme with constituent codes optimization is also presents. This construction scheme aims to reduce the constituent codes based SC decoding latency. Results show that, compared with the state-of-art decoder, TCSC can achieve at least 60% latency reduction for the codes with length n = 1024. By using Nangate FreePDK 45nm process, TCSC decoder can reach throughput up to 5.81 Gbps and 2.01 Gbps for (1024, 870) and (1024, 512) polar code, respectively. Besides, with the proposed construction scheme, the TCSC decoder generally is able to further achieve at least around 20% latency deduction with an negligible gain loss. Overlapped List Successive Cancellation (OLSC) is proposed for LSC decoding as a design approach. LSC decoding has a better performance than LS decoding at the cost of hardware consumption. With such approach, the l (l > 1) instances of successive cancellation (SC) decoder for LSC with list size l can be cut down to only one. This results in a dramatic reduction of the hardware complexity without any decoding performance loss. Meanwhile, approaches to reduce the latency associated with the pipeline scheme are also investigated. Simulation results show that with proposed design approach the hardware efficiency is increased significantly over the recently proposed LSC decoders. Express Journey Belief Propagation (XJBP) is proposed for BP decoding. This idea origins from extending the constituent codes concept from SC to BP decoding. Express journey refers to the datapath of specific constituent codes in the factor graph, which accelerates the belief information propagation speed. The XJBP decoder is able to achieve 40.6% computational complexity reduction with the conventional BP decoding. This enables an energy efficient hardware implementation. In summary, all the efforts to optimize the polar code decoder are presented in this dissertation, supported by the careful analysis, precise description, extensively numerical simulations, thoughtful discussion and RTL implementation on VLSI design platforms

    XJ-BP: Express Journey Belief Propagation Decoding for Polar Codes

    Full text link
    This paper presents a novel propagation (BP) based decoding algorithm for polar codes. The proposed algorithm facilitates belief propagation by utilizing the specific constituent codes that exist in the factor graph, which results in an express journey (XJ) for belief information to propagate in each decoding iteration. In addition, this XJ-BP decoder employs a novel round-trip message passing scheduling method for the increased efficiency. The proposed method simplifies min-sum (MS) BP decoder by 40.6%. Along with the round-trip scheduling, the XJ-BP algorithm reduces the computational complexity of MS BP decoding by 90.4%; this enables an energy-efficient hardware implementation of BP decoding in practice.Comment: submitted to GLOBECOMM 201

    Low Complexity Belief Propagation Polar Code Decoders

    Full text link
    Since its invention, polar code has received a lot of attention because of its capacity-achieving performance and low encoding and decoding complexity. Successive cancellation decoding (SCD) and belief propagation decoding (BPD) are two of the most popular approaches for decoding polar codes. SCD is able to achieve good error-correcting performance and is less computationally expensive as compared to BPD. However SCDs suffer from long latency and low throughput due to the serial nature of the successive cancellation algorithm. BPD is parallel in nature and hence is more attractive for high throughput applications. However since it is iterative in nature, the required latency and energy dissipation increases linearly with the number of iterations. In this work, we borrow the idea of SCD and propose a novel scheme based on sub-factor-graph freezing to reduce the average number of computations as well as the average number of iterations required by BPD, which directly translates into lower latency and energy dissipation. Simulation results show that the proposed scheme has no performance degradation and achieves significant reduction in computation complexity over the existing methods.Comment: 6 page
    • …
    corecore