221 research outputs found

    Expectation propagation as a solution for digital communication systems.

    Get PDF
    In the context of digital communications, a digital receiver is required to provide an estimation of the transmitted symbols. Nowadays channel decoders highly benefit from soft (probabilistic) estimates for each transmitted symbol rather than from hard decisions. For this reason, digital receivers must be designed to provide the probability that each possible symbol was transmitted based on the received corrupted signal. Since exact inference might be unfeasible in terms of complexity for high-order scenarios, it is necessary to resort to approximate inference, such as the linear minimum mean square error (LMMSE) criterion. The LMMSE approximates the discrete prior information of the transmitted symbols with a Gaussian distribution, which causes a degradation in its performance. In this thesis, an alternative approximate statistical technique is applied to the design of a digital probabilistic receiver in digital communications. Specifically, the expectation propagation (EP) algorithm is investigated to find the Gaussian posterior probability density function (pdf) that minimizes the Kullback-Leibler (KL) divergence with respect to the true posterior pdf. Two different communication system scenarios are studied: a single-input singleoutput (SISO) digital communication system with memory channel and a multipleinput multiple-output (MIMO) system with memoryless channel. In the SISO scenario, three different designs of a soft standalone and turbo equalizer based on the EP algorithm are developed: the block or batch approach, the filter-type version that emulates theWiener filter behavior and the smoothing equalizer which proceeds similarly to a Kalman smoother. Finally, the block EP implementation is also adapted to MIMO scenarios with feedback from the decoder. In both scenarios, the EP is applied iteratively, including a damping mechanism and a control to avoid negative values of variances, which would lead to instabilities (specially for high-order constellations). Experimental results included through the thesis show that the EP algorithm applied to communication systems greatly improves the performance of previous approaches found in the literature with a complexity slightly increased but still proportional to that of the LMMSE. These results also show the robustness of the algorithm even for high-order modulations, large memory channels and high number of antennas. Major contributions of this dissertation have been published in four journal (one of them is still under review) and two conference papers. One more paper will be submitted to a journal soon. All these papers are listed below: • Irene Santos, Juan José Murillo-Fuentes, Rafael Boloix-Tortosa, Eva Arias de Reyna and Pablo M. Olmos, "Expectation Propagation as Turbo Equalizer in ISI Channels," IEEE Transactions on Communications, vol. 65, no.1, pp. 360-370, Jan 2017. • Irene Santos, Juan José Murillo-Fuentes, Eva Arias de Reyna and Pablo M. Olmos, "Turbo EP-based Equalization: a Filter-Type Implementation," IEEE Transactions on Communications, Sep 2017, Accepted. [Online] Available: https://ieeexplore.ieee.org/document/8353388/ • Irene Santos, Juan José Murillo-Fuentes, Eva Arias-de-Reyna and Pablo M. Olmos, "Probabilistic Equalization With a Smoothing Expectation Propagation Approach," IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2950-2962, May 2017. • Irene Santos, Juan José Murillo-Fuentes and Eva Arias-de-Reyna, "Equalization with Expectation Propagation at Smoothing Level," To be submitted. [Online] Available: https://arxiv.org/abs/1809.00806 • Irene Santos and Juan José Murillo-Fuentes, "EP-based turbo detection for MIMO receivers and large-scale systems," IEEE Transactions on Vehicular Technology, May 2018, Under review. [Online] Available: https://arxiv.org/abs/1805.05065 • Irene Santos, Juan José Murillo-Fuentes, and Pablo M. Olmos, "Block expectation propagation equalization for ISI channels," 23rd European Signal Processing Conference (EUSIPCO 2015), Nice, 2015, pp. 379-383. • Irene Santos, and Juan José Murillo-Fuentes, "Improved probabilistic EPbased receiver for MIMO systems and high-order modulations," XXXIII Simposium Nacional de la Unión Científica Internacional de Radio (URSI 2018), Granada, 2018.En el ámbito de las comunicaciones digitales, es necesario un receptor digital que proporcione una estimación de los símbolos transmitidos. Los decodificadores de canal actuales se benefician enormemente de estimaciones suaves (probabilísticas) de cada símbolo transmitido, en vez de estimaciones duras. Por este motivo, los receptores digitales deben diseñarse para proporcionar la probabilidad de cada posible símbolo que fue transmitido en base a la señal recibida y corrupta. Dado que la inferencia exacta puede no ser posible en términos de complejidad para escenarios de alto orden, es necesario recurrir a inferencia aproximada, como por ejemplo el criterio de linear minimum-mean-square-error (LMMSE). El LMMSE aproxima la información a priori discreta de los símbolos transmitidos con una distribución Gaussiana, lo cual provoca una degradación en su resultado. En esta tesis, se aplica una técnica alternativa de inferencia estadística para diseñar un receptor digital probabilístico de comunicaciones digitales. En concreto, se investiga el algoritmo expectation propagation (EP) con el objetivo de encontrar la función densidad de probabilidad (pdf) a posteriori Gaussiana que minimiza la divergencia de Kullback-Leibler (KL) con respecto a la pdf a posteriori verdadera. Se estudian dos escenarios de comunicaciones digitales diferentes: un sistema de comunicaciones single-input single-output (SISO) con canales con memoria y un sistema multiple-input multiple-output (MIMO) con canales sin memoria. Para el escenario SISO se proponen tres diseños diferentes para un igualador probabilístico, tanto simple como turbo, que está basado en el algoritmo EP: una versión bloque, una versión filtrada que emula el comportamiento de un filtroWiener y una versión smoothing que funciona de forma similar a un Kalman smoother. Finalmente, la implementación del EP en bloque se adapta también para escenarios MIMO con realimentación desde el decodificador. En ambos escenarios, el EP se aplica de forma iterativa, incluyendo un mecanismo de damping y un control para evitar valores de varianzas negativas, que darían lugar a inestabilidades (especialmente, en constelaciones de alto orden). Los resultados experimentales que se incluyen en la tesis muestran que, cuando el algoritmo EP se aplica a sistemas de comunicaciones, se mejora notablemente el resultado de otras propuestas anteriores que existen en la literatura, con un pequeño incremento de la complejidad que es proporcional a la carga del LMMSE. Estos resultados también demuestran la robustez del algoritmo incluso para modulaciones de alto orden, canales con bastante memoria y un gran número de antenas. Las principales contribuciones de esta tesis se han publicado en cuatro artículos de revista (uno de ellos todavía bajo revisión) y dos artículos de conferencia. Otro artículo adicional se encuentra en preparación y se enviaría próximamente a una revista. Estos se citan a continuación: • Irene Santos, Juan José Murillo-Fuentes, Rafael Boloix-Tortosa, Eva Arias de Reyna and Pablo M. Olmos, "Expectation Propagation as Turbo Equalizer in ISI Channels," IEEE Transactions on Communications, vol. 65, no.1, pp. 360-370, Jan 2017. • Irene Santos, Juan José Murillo-Fuentes, Eva Arias de Reyna and Pablo M. Olmos, "Turbo EP-based Equalization: a Filter-Type Implementation," IEEE Transactions on Communications, Sep 2017, Aceptado. [Online] Disponible: https://ieeexplore.ieee.org/document/8353388/ • Irene Santos, Juan José Murillo-Fuentes, Eva Arias-de-Reyna and Pablo M. Olmos, "Probabilistic Equalization With a Smoothing Expectation Propagation Approach," IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2950-2962, May 2017. • Irene Santos, Juan José Murillo-Fuentes and Eva Arias-de-Reyna, "Equalization with Expectation Propagation at Smoothing Level," En preparación. [Online] Disponible: https://arxiv.org/abs/1809.00806 • Irene Santos and Juan José Murillo-Fuentes, "EP-based turbo detection for MIMO receivers and large-scale systems," IEEE Transactions on Vehicular Technology, May 2018, En revisión. [Online] Disponible: https://arxiv.org/abs/1805.05065 • Irene Santos, Juan José Murillo-Fuentes, and Pablo M. Olmos, "Block expectation propagation equalization for ISI channels," 23rd European Signal Processing Conference (EUSIPCO 2015), Nice, 2015, pp. 379-383. • Irene Santos, and Juan José Murillo-Fuentes, "Improved probabilistic EPbased receiver for MIMO systems and high-order modulations," XXXIII Simposium Nacional de la Unión Científica Internacional de Radio (URSI 2018), Granada, 2018

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Graph-Based Decoding in the Presence of ISI

    Full text link
    We propose an approximation of maximum-likelihood detection in ISI channels based on linear programming or message passing. We convert the detection problem into a binary decoding problem, which can be easily combined with LDPC decoding. We show that, for a certain class of channels and in the absence of coding, the proposed technique provides the exact ML solution without an exponential complexity in the size of channel memory, while for some other channels, this method has a non-diminishing probability of failure as SNR increases. Some analysis is provided for the error events of the proposed technique under linear programming.Comment: 25 pages, 8 figures, Submitted to IEEE Transactions on Information Theor

    Reduced Receivers for Faster-than-Nyquist Signaling and General Linear Channels

    Get PDF
    Fast and reliable data transmission together with high bandwidth efficiency are important design aspects in a modern digital communication system. Many different approaches exist but in this thesis bandwidth efficiency is obtained by increasing the data transmission rate with the faster-than-Nyquist (FTN) framework while keeping a fixed power spectral density (PSD). In FTN consecutive information carrying symbols can overlap in time and in that way introduce a controlled amount of intentional intersymbol interference (ISI). This technique was introduced already in 1975 by Mazo and has since then been extended in many directions. Since the ISI stemming from practical FTN signaling can be of significant duration, optimum detection with traditional methods is often prohibitively complex, and alternative equalization methods with acceptable complexity-performance tradeoffs are needed. The key objective of this thesis is therefore to design reduced-complexity receivers for FTN and general linear channels that achieve optimal or near-optimal performance. Although the performance of a detector can be measured by several means, this thesis is restricted to bit error rate (BER) and mutual information results. FTN signaling is applied in two ways: As a separate uncoded narrowband communication system or in a coded scenario consisting of a convolutional encoder, interleaver and the inner ISI mechanism in serial concatenation. Turbo equalization where soft information in the form of log likelihood ratios (LLRs) is exchanged between the equalizer and the decoder is a commonly used decoding technique for coded FTN signals. The first part of the thesis considers receivers and arising stability problems when working within the white noise constraint. New M-BCJR algorithms for turbo equalization are proposed and compared to reduced-trellis VA and BCJR benchmarks based on an offset label idea. By adding a third low-complexity M-BCJR recursion, LLR quality is improved for practical values of M. M here measures the reduced number of BCJR computations for each data symbol. An improvement of the minimum phase conversion that sharpens the focus of the ISI model energy is proposed. When combined with a delayed and slightly mismatched receiver, the decoding allows a smaller M without significant loss in BER. The second part analyzes the effect of the internal metric calculations on the performance of Forney- and Ungerboeck-based reduced-complexity equalizers of the M-algorithm type for both ISI and multiple-input multiple-output (MIMO) channels. Even though the final output of a full-complexity equalizer is identical for both models, the internal metric calculations are in general different. Hence, suboptimum methods need not produce the same final output. Additionally, new models working in between the two extremes are proposed and evaluated. Note that the choice of observation model does not impact the detection complexity as the underlying algorithm is unaltered. The last part of the thesis is devoted to a different complexity reducing approach. Optimal channel shortening detectors for linear channels are optimized from an information theoretical perspective. The achievable information rates of the shortened models as well as closed form expressions for all components of the optimal detector of the class are derived. The framework used in this thesis is more general than what has been previously used within the area

    Optical Time-Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration

    Full text link
    Time-frequency packing (TFP) transmission provides the highest achievable spectral efficiency with a constrained symbol alphabet and detector complexity. In this work, the application of the TFP technique to fiber-optic systems is investigated and experimentally demonstrated. The main theoretical aspects, design guidelines, and implementation issues are discussed, focusing on those aspects which are peculiar to TFP systems. In particular, adaptive compensation of propagation impairments, matched filtering, and maximum a posteriori probability detection are obtained by a combination of a butterfly equalizer and four 8-state parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel algorithm that ensures adaptive equalization, channel estimation, and a proper distribution of tasks between the equalizer and BCJR detectors is proposed. A set of irregular low-density parity-check codes with different rates is designed to operate at low error rates and approach the spectral efficiency limit achievable by TFP at different signal-to-noise ratios. An experimental demonstration of the designed system is finally provided with five dual-polarization QPSK-modulated optical carriers, densely packed in a 100 GHz bandwidth, employing a recirculating loop to test the performance of the system at different transmission distances.Comment: This paper has been accepted for publication in the IEEE/OSA Journal of Lightwave Technolog
    • …
    corecore