40,182 research outputs found

    A linear memory algorithm for Baum-Welch training

    Get PDF
    Background: Baum-Welch training is an expectation-maximisation algorithm for training the emission and transition probabilities of hidden Markov models in a fully automated way. Methods and results: We introduce a linear space algorithm for Baum-Welch training. For a hidden Markov model with M states, T free transition and E free emission parameters, and an input sequence of length L, our new algorithm requires O(M) memory and O(L M T_max (T + E)) time for one Baum-Welch iteration, where T_max is the maximum number of states that any state is connected to. The most memory efficient algorithm until now was the checkpointing algorithm with O(log(L) M) memory and O(log(L) L M T_max) time requirement. Our novel algorithm thus renders the memory requirement completely independent of the length of the training sequences. More generally, for an n-hidden Markov model and n input sequences of length L, the memory requirement of O(log(L) L^(n-1) M) is reduced to O(L^(n-1) M) memory while the running time is changed from O(log(L) L^n M T_max + L^n (T + E)) to O(L^n M T_max (T + E)). Conclusions: For the large class of hidden Markov models used for example in gene prediction, whose number of states does not scale with the length of the input sequence, our novel algorithm can thus be both faster and more memory-efficient than any of the existing algorithms.Comment: 14 pages, 1 figure version 2: fixed some errors, final version of pape

    A statistical multiresolution approach for face recognition using structural hidden Markov models

    Get PDF
    This paper introduces a novel methodology that combines the multiresolution feature of the discrete wavelet transform (DWT) with the local interactions of the facial structures expressed through the structural hidden Markov model (SHMM). A range of wavelet filters such as Haar, biorthogonal 9/7, and Coiflet, as well as Gabor, have been implemented in order to search for the best performance. SHMMs perform a thorough probabilistic analysis of any sequential pattern by revealing both its inner and outer structures simultaneously. Unlike traditional HMMs, the SHMMs do not perform the state conditional independence of the visible observation sequence assumption. This is achieved via the concept of local structures introduced by the SHMMs. Therefore, the long-range dependency problem inherent to traditional HMMs has been drastically reduced. SHMMs have not previously been applied to the problem of face identification. The results reported in this application have shown that SHMM outperforms the traditional hidden Markov model with a 73% increase in accuracy
    corecore