1,100 research outputs found

    Convex optimization of launch vehicle ascent trajectories

    Get PDF
    This thesis investigates the use of convex optimization techniques for the ascent trajectory design and guidance of a launch vehicle. An optimized mission design and the implementation of a minimum-propellant guidance scheme are key to increasing the rocket carrying capacity and cutting the costs of access to space. However, the complexity of the launch vehicle optimal control problem (OCP), due to the high sensitivity to the optimization parameters and the numerous nonlinear constraints, make the application of traditional optimization methods somewhat unappealing, as either significant computational costs or accurate initialization points are required. Instead, recent convex optimization algorithms theoretically guarantee convergence in polynomial time regardless of the initial point. The main challenge consists in converting the nonconvex ascent problem into an equivalent convex OCP. To this end, lossless and successive convexification methods are employed on the launch vehicle problem to set up a sequential convex optimization algorithm that converges to the solution of the original problem in a short time. Motivated by the computational efficiency and reliability of the devised optimization strategy, the thesis also investigates the suitability of the convex optimization approach for the computational guidance of a launch vehicle upper stage in a model predictive control (MPC) framework. Being MPC based on recursively solving onboard an OCP to determine the optimal control actions, the resulting guidance scheme is not only performance-oriented but intrinsically robust to model uncertainties and random disturbances thanks to the closed-loop architecture. The characteristics of real-world launch vehicles are taken into account by considering rocket configurations inspired to SpaceX's Falcon 9 and ESA's VEGA as case studies. Extensive numerical results prove the convergence properties and the efficiency of the approach, posing convex optimization as a promising tool for launch vehicle ascent trajectory design and guidance algorithms

    On-board Trajectory Computation for Mars Atmospheric Entry Based on Parametric Sensitivity Analysis of Optimal Control Problems

    Get PDF
    This thesis develops a precision guidance algorithm for the entry of a small capsule into the atmosphere of Mars. The entry problem is treated as nonlinear optimal control problem and the thesis focuses on developing a suboptimal feedback law. Therefore parametric sensitivity analysis of optimal control problems is combined with dynamic programming. This approach enables a real-time capable, locally suboptimal feedback scheme. The optimal control problem is initially considered in open loop fashion. To synthesize the feedback law, the optimal control problem is embedded into a family of neighboring problems, which are described by a parameter vector. The optimal solution for a nominal set of parameters is determined using direct optimization methods. In addition the directional derivatives (sensitivities) of the optimal solution with respect to the parameters are computed. Knowledge of the nominal solution and the sensitivities allows, under certain conditions, to apply Taylor series expansion to approximate the optimal solution for disturbed parameters almost instantly. Additional correction steps can be applied to improve the optimality of the solution and to eliminate errors in the constraints. To transfer this strategy to the closed loop system, the computation of the sensitivities is performed with respect to different initial conditions. Determining the perturbation direction and interpolating between sensitivities of neighboring initial conditions allows the approximation of the extremal field in a neighborhood of the nominal trajectory. This constitutes a locally suboptimal feedback law. The proposed strategy is applied to the atmospheric entry problem. The developed algorithm is part of the main control loop, i.e. optimal controls and trajectories are computed at a fixed rate, taking into account the current state and parameters. This approach is combined with a trajectory tracking controller based on the aerodynamic drag. The performance and the strengthsa and weaknesses of this two degree of freedom guidance system are analyzed using Monte Carlo simulation. Finally the real-time capability of the proposed algorithm is demonstrated in a flight representative processor-in-the-loop environment

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Mathematical modeling, simulation, and optimization of loading schemes for isometric resistance training

    Get PDF
    In this thesis, we present a novel mathematical model-based approach to optimize loading schemes of isometric resistance training (RT) sessions for different training goals. To this end, we develop a nonlinear ordinary differential equation model of the time course of maximum voluntary isometric (MVIC) force under external isometric loading. To validate the model, we set up multi-experiment parameter estimation problems using a comprehensive dataset from the literature. We solve these problems numerically via direct multiple shooting and the generalized Gauss-Newton method. Moreover, we use the proposed model to examine hypotheses about fatigue and recovery of MVIC force. Then, we mathematically formulate key performance indicators and optimality criteria for loading schemes of isometric RT sessions identified in sports science and incorporate these into multi-stage optimal control problems. We solve these problems numerically via direct multiple shooting and structure-exploiting sequential quadratic programming. We discuss the results from a numerical and sports scientific point of view. Based on the proposed model, we additionally formulate the estimation of critical torque as a nonlinear program. This allows us to reduce the experimental effort compared to conventional testing when estimating these quantities. Furthermore, we formulate multi-stage optimum experimental design problems to reduce the statistical uncertainty of the parameter estimates when calibrating the model. We solve these problems numerically via direct single shooting and sequential quadratic programming. We discuss the solutions from a numerical and physiological point of view. For our approach, a small amount of data obtained in a single testing session is sufficient. Our approach can be extended to more elaborate physiological models and other forms of resistance training once suitable models become available

    Nonlinear Model Predictive Control for Motion Generation of Humanoids

    Get PDF
    Das Ziel dieser Arbeit ist die Untersuchung und Entwicklung numerischer Methoden zur Bewegungserzeugung von humanoiden Robotern basierend auf nichtlinearer modell-prädiktiver Regelung. Ausgehend von der Modellierung der Humanoiden als komplexe Mehrkörpermodelle, die sowohl durch unilaterale Kontaktbedingungen beschränkt als auch durch die Formulierung unteraktuiert sind, wird die Bewegungserzeugung als Optimalsteuerungsproblem formuliert. In dieser Arbeit werden numerische Erweiterungen basierend auf den Prinzipien der Automatischen Differentiation für rekursive Algorithmen, die eine effiziente Auswertung der dynamischen Größen der oben genannten Mehrkörperformulierung erlauben, hergeleitet, sodass sowohl die nominellen Größen als auch deren ersten Ableitungen effizient ausgewertet werden können. Basierend auf diesen Ideen werden Erweiterungen für die Auswertung der Kontaktdynamik und der Berechnung des Kontaktimpulses vorgeschlagen. Die Echtzeitfähigkeit der Berechnung von Regelantworten hängt stark von der Komplexität der für die Bewegungerzeugung gewählten Mehrkörperformulierung und der zur Verfügung stehenden Rechenleistung ab. Um einen optimalen Trade-Off zu ermöglichen, untersucht diese Arbeit einerseits die mögliche Reduktion der Mehrkörperdynamik und andererseits werden maßgeschneiderte numerische Methoden entwickelt, um die Echtzeitfähigkeit der Regelung zu realisieren. Im Rahmen dieser Arbeit werden hierfür zwei reduzierte Modelle hergeleitet: eine nichtlineare Erweiterung des linearen inversen Pendelmodells sowie eine reduzierte Modellvariante basierend auf der centroidalen Mehrkörperdynamik. Ferner wird ein Regelaufbau zur GanzkörperBewegungserzeugung vorgestellt, deren Hauptbestandteil jeweils aus einem speziell diskretisierten Problem der nichtlinearen modell-prädiktiven Regelung sowie einer maßgeschneiderter Optimierungsmethode besteht. Die Echtzeitfähigkeit des Ansatzes wird durch Experimente mit den Robotern HRP-2 und HeiCub verifiziert. Diese Arbeit schlägt eine Methode der nichtlinear modell-prädiktiven Regelung vor, die trotz der Komplexität der vollen Mehrkörperformulierung eine Berechnung der Regelungsantwort in Echtzeit ermöglicht. Dies wird durch die geschickte Kombination von linearer und nichtlinearer modell-prädiktiver Regelung auf der aktuellen beziehungsweise der letzten Linearisierung des Problems in einer parallelen Regelstrategie realisiert. Experimente mit dem humanoiden Roboter Leo zeigen, dass, im Vergleich zur nominellen Strategie, erst durch den Einsatz dieser Methode eine Bewegungserzeugung auf dem Roboter möglich ist. Neben Methoden der modell-basierten Optimalsteuerung werden auch modell-freie Methoden des verstärkenden Lernens (Reinforcement Learning) für die Bewegungserzeugung untersucht, mit dem Fokus auf den schwierig zu modellierenden Modellunsicherheiten der Roboter. Im Rahmen dieser Arbeit werden eine allgemeine vergleichende Studie sowie Leistungskennzahlen entwickelt, die es erlauben, modell-basierte und -freie Methoden quantitativ bezüglich ihres Lösungsverhaltens zu vergleichen. Die Anwendung der Studie auf ein akademisches Beispiel zeigt Unterschiede und Kompromisse sowie Break-Even-Punkte zwischen den Problemformulierungen. Diese Arbeit schlägt basierend auf dieser Grundlage zwei mögliche Kombinationen vor, deren Eigenschaften bewiesen und in Simulation untersucht werden. Außerdem wird die besser abschneidende Variante auf dem humanoiden Roboter Leo implementiert und mit einem nominellen modell-basierten Regler verglichen
    corecore