181 research outputs found

    Numerical and experimental investigations of interdigital transducer configurations for efficient droplet streaming and jetting induced by surface acoustic waves

    Get PDF
    Surface acoustic wave (SAW) based technologies have recently been explored for various sensing and microfluidic applications, and numerous experimental studies and numerical modelling of SAW streaming and liquid-solid interactions have been performed. However, the large deformation of droplet interface actuated by SAWs has not been widely explored, mainly due to the complex physics of SAW-droplet interactions and interfacial phenomena. In this paper, a computational interface tracking method is developed based on the couple level set the volume of fluid (CLSVOF) approach to simulate the interactions between liquid and acoustic waves and deformation of the liquid-air surface. A dynamic contact angle boundary condition is developed and validated by experimental results to simulate the three-phase contact line dynamics. The modified CLSVOF method is then used to study the droplet jetting and internal streaming behaviours by analyzing the energy terms within the liquid medium. Furthermore, by applying the numerical model, effects of configurations and positions of two interdigital transducers (IDTs) on droplet actuation have been investigated to achieve efficient mixing, separation, and jetting. Results show that two perfectly aligned IDTs are optimal for mixing applications. In contrast, two offset IDTs are optimal for concentration and separation applications. The maximum jetting velocity and minimum jetting time are achieved by using a pair of aligned IDTs, whereas by using the two offset IDTs, effective liquid mixing and jetting are observed which can be used in bioprinting applications

    Modeling of cell sorting and rare cell capture with microfabricated biodevices

    Get PDF
    In this paper, we review different aspects of computer modeling and simulation of lab-on-a-chip type bioanalytical devices, with special emphasis on cell sorting and rare cell capture, such as circulating tumor cells (CTCs). We critically review important fundamental concepts and innovative applications in addition to detailed analysis by multiphysics approaches. Relevant essentials of hydrodynamic, Newtonian, and non-Newtonian rheological behavior, single and multiphase models, together with various force field-mediated flows are discussed with respect to cell sorting. Furthermore, we provide a summary of techniques used to simulate electric and magnetic field-based rare cell capture methods, such as electrophoresis and magnetophoresis. Finally, we present simulations of practical applications to help non-specialists understand the basic principles and applications

    Data-scarce surrogate modeling of shock-induced pore collapse process

    Full text link
    Understanding the mechanisms of shock-induced pore collapse is of great interest in various disciplines in sciences and engineering, including materials science, biological sciences, and geophysics. However, numerical modeling of the complex pore collapse processes can be costly. To this end, a strong need exists to develop surrogate models for generating economic predictions of pore collapse processes. In this work, we study the use of a data-driven reduced order model, namely dynamic mode decomposition, and a deep generative model, namely conditional generative adversarial networks, to resemble the numerical simulations of the pore collapse process at representative training shock pressures. Since the simulations are expensive, the training data are scarce, which makes training an accurate surrogate model challenging. To overcome the difficulties posed by the complex physics phenomena, we make several crucial treatments to the plain original form of the methods to increase the capability of approximating and predicting the dynamics. In particular, physics information is used as indicators or conditional inputs to guide the prediction. In realizing these methods, the training of each dynamic mode composition model takes only around 30 seconds on CPU. In contrast, training a generative adversarial network model takes 8 hours on GPU. Moreover, using dynamic mode decomposition, the final-time relative error is around 0.3% in the reproductive cases. We also demonstrate the predictive power of the methods at unseen testing shock pressures, where the error ranges from 1.3% to 5% in the interpolatory cases and 8% to 9% in extrapolatory cases

    Shear-horizontal surface acoustic wave microfluidics for lab-on-chip applications

    Get PDF
    Surface acoustic wave (SAW) devices based on the piezoelectric principle have been used extensively in telecommunication applications over the last 20 years, but have recently shown promise in the area of biomedical applications due to their efficient micro-fluidic functions and highly sensitive and label-free detection of pathogens, bacteria, cells, DNA and proteins. There are two types of surface acoustic wave modes: i.e., Rayleigh SAW (R-SAW) and shear horizontal SAW (SH-SAW). R-SAW is widely used for microfluidics and sensing in dry conditions, whereas SH-SAW is mainly used for sensing in liquid conditions. This thesis firstly reviewed the current theoretical and research progress related to these devices and application within the biomedical fields to date, and then the SH-SAW was applied into a novel lab-on-chip combining both bio-sensing and micro-fluidic functions. Simulations of the SH-SAW propagation on 36o Y-cut LiTaO3 were undertaken. Results showed a weak vertical wave component, and at a 90° rotation cut, the crystal was able to support a vertical Rayleigh component showing mixed sensing and streaming possibilities on a single crystal. Experimental investigation of the SH-SAW identified the ability for the shear wave to support mixing, pumping, heating, nebulisation and ejection of sessile droplets on the surface of the crystal with a theoretical explanation for the behaviour presented. A comparison with a standard R-SAW devices made of 128o Y-cut LiNbO3 and sputtered ZnO films was performed. This novel behaviour of digital microfludics, i.e., using sessile droplet with the SH-SAW, demonstrated by this work offers the possibility to manufacture a fully integrated micro-fluidic bio-sensing platform using a single crystal to realise a range of micro-fluidic functions

    BioMEMS

    Get PDF
    As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (μTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications

    Numerical and experimental investigations of interdigital transducer configurations for efficient droplet streaming and jetting induced by surface acoustic waves

    Get PDF
    Surface acoustic wave (SAW) based technologies have recently been explored for various sensing and microfluidic applications, and numerous experimental studies and numerical modelling of SAW streaming and liquid-solid interactions have been performed. However, the large deformation of droplet interface actuated by SAWs has not been widely explored, mainly due to the complex physics of SAW-droplet interactions and interfacial phenomena. In this paper, a computational interface tracking method is developed based on the couple level set the volume of fluid (CLSVOF) approach to simulate the interactions between liquid and acoustic waves and deformation of the liquid-air surface. A dynamic contact angle boundary condition is developed and validated by experimental results to simulate the three-phase contact line dynamics. The modified CLSVOF method is then used to study the droplet jetting and internal streaming behaviours by analyzing the energy terms within the liquid medium. Furthermore, by applying the numerical model, effects of configurations and positions of two interdigital transducers (IDTs) on droplet actuation have been investigated to achieve efficient mixing, separation, and jetting. Results show that two perfectly aligned IDTs are optimal for mixing applications. In contrast, two offset IDTs are optimal for concentration and separation applications. The maximum jetting velocity and minimum jetting time are achieved by using a pair of aligned IDTs, whereas by using the two offset IDTs, effective liquid mixing and jetting are observed which can be used in bioprinting applications

    BioMEMS

    Get PDF
    As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (μTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications

    In Situ Preconcentration by AC Electrokinetics for Rapid and Sensitive Nanoparticle Detection

    Get PDF
    Reducing cost and time is a major concern in clinical diagnostics. Current molecular diagnostics are multi-step processes that usually take at least several hours or even days to complete multiple reagents delivery, incubations and several washing processes. This highly labor-intensive work and lack of automation could result in reduced reliability and low efficiency. The Laboratory-on-a-chip (LOC), taking advantage of the merger and development of microfluidics and biosensor technology, has shown promise towards a solution for performing analytical tests in a self-contained and compact unit, enabling earlier and decentralized testing. However, challenges are to integrate the fluid regulatory elements on a single platform and to detect target analytes with high sensitivity and selectivity. The goal of this research work is to develop an AC electrokinetic (ACEK) flow through concentrator for in-situ concentration of biomolecules and develop a comprehensive understanding of effects of ACEK flow on the biomolecule transport (in-situ concentration) and their impact on electronic biosensing mechanism and performance, achieving automation and miniaturization. ACEK is a new and promising technique to manipulate micro/bio-fluids and particles. It has many advantages over other techniques for its low applied voltage, portability and compatibility for integration into lab-on-a-chip devices. Numerical study on preconcentration system design in this work has provided an optimization rule for various biosensor designs using ACEK technique. And the microfluidic immunoassay lab-chip designed based on ACET effect has showed promising prospect for accelerated diagnostics. With optimized design of channel geometry, electrode patterns, and properly selected operation condition (ac frequency and voltage), the preconcentration system greatly reduced the reaction time to several minutes instead of several hours, and improved sensitivity of the assay. With the design of immunoassay lab-chip, one can quantitatively study the effect of ACET micropumping and mixing on molecular level binding. Improved sensors with single-chip form factor as a general platform could have a significant impact on a wide-range of biochemical detection and disease diagnostics including pathogen/virus detection, whole blood analysis, immune-screening, gene expression, as well as home land security
    • …
    corecore