1,193 research outputs found

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Estimation of rotor flux of an induction machine

    Get PDF
    The objective of this dissertation is to estimate rotor flux of an IM. Some of the material is focused on the functional block of the IM i.e. Torque estimator, Speed estimator etc. while a subsequent part deals with estimation of rotor flux. The dissertation is organized as follows:Chapter 1 describes background information of the machines then it focuses on the methodology how on to approach the task on a particular time with the help of Gantt chart.Chapter 2 presents the basic principals of rotating magnetic field of the IM and asserts brief overview of the AC machines. Later it talks about different kinds of IM rotors suggesting which one is good. It is crucial to start with good and appropriate reviews which were verified by numerous journals. Literature review is presented by analysing the previous work. (Busawan et al., 2001) summarises that a nonlinear observers for the estimation of the rotor flux and the load torque in an induction motor. The observers are designed on the basis of the standard alpha - beta Park's model. Finally, fuzzy logic is mentioned in more detailed way and Membership functions were also discussedChapter 3 explains the dynamic model of induction machine plant and the model was presented. Then the model is analysed, developed in MATLAB-SIMULINK which was discussed in Chapter 4. By considering following assumptions, dynamic model is implemented i.e. it should be symmetrical two-pole, three phase windings. Slotting effects are neglected, Permeability of the iron part is infinite, and iron losses are neglected. Dynamic d-q model and Axes transformation is implemented on stationary reference frame (a-b-c). Lastly torque equation is derived.Chapter 4 is the heart of this project by scrutinizing the model thoroughly and by introducing fuzzy controller logic using MATLAB-SIMULINK; simulations are performed to estimate the functional block such as torque, speed, flux, resistance with and without fuzzy logic. Results were obtained for different blocks and the m-file, DTC, Flux table were obtained and presented in the Appendixes.Chapter 5 concludes the simulation results and concentrates mainly on the future direction what more can be done to improve the platform in a more efficient manner

    Closed-Loop Drive Detection and Diagnosis of Multiple Combined Faults in Induction Motor Through Model-Based and Neuro-Fuzzy Network Techniques

    Get PDF
    In this paper, a fault detection and diagnosis approach adopted for an input-output feedback linearization (IOFL) control of induction motor (IM) drive is proposed. This approach has been employed to detect and identify the simple and mixed broken rotor bars and static air-gap eccentricity faults right from the start its operation by utilizing advanced techniques. Therefore, two techniques are applied: the model-based strategy, which is an online method used to generate residual stator current signal in order to indicate the presence of possible failures by means of the sliding mode observer (SMO) in the closed-loop drive. However, this strategy is not able to recognise the fault types and it can be affected by the other disturbances. Therefore, the offline method using the multi-adaptive neuro-fuzzy inference system (MANAFIS) technique is proposed to identify the faults and distinguish them. However, the MANAFIS required a relevant database to achieve satisfactory results. Hence, the stator current analysis based on the HFFT combination of the Hilbert transform (HT) and Fast Fourier transform (FFT) is applied to extract the amplitude of harmonics due to defects occur and used them as an input data set for the MANFIS under different loads and fault severities. The simulation results show the efficiency of the proposed techniques and its ability to detect and diagnose any minor faults in a closed-loop drive of IM

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    COMPARATIVE AND PERFORMANCE ANALYSIS OF INDUCTION MOTOR WITH ANN CONTROLLER

    Get PDF
    A novel design of an adaptive artificial neural network technique (ANN) for controlling of the essential parameters, like as speed,  torque, flux, voltage, current, and power etc of the induction motor is presented in this paper. Induction motors are characterized by way of incredibly non-linear, complicated and time-various dynamics and inaccessibility of its states and outputs for measurements. Thus it can be considered as a challenging engineering difficulty in the industrial sector. A few of them, such as PI, fuzzy strategies, Fuzzy logic based controllers are regarded as capability candidates for such application for operating induction motor. Hence of which, the outcome of the controller is also random and high-rated results are probably not obtained. Resolution of the proper rule base application upon the drawback can be achieved by the use of an ANN controller, which becomes a built-in system of method for the manipulate purposes and yields results, which is the focus of this paper. Within the designed ANN scheme, neural community tactics are used to prefer an appropriate rule base, which is utilizing the back propagation algorithm. The simulation outcome provided on this paper is exhibit the effectiveness of the developed approach, which has acquired faster response time or settling times. Additionally, the procedure developed has got a huge number of benefits within the industrial sector will also be converted into a real time application making use of some interfacing cards

    Wavelet packet analysis for rotor bar breakage in an inverter induction motor

    Get PDF
    Introduction. In various industrial processes, squirrel cage induction motors are widely employed. These motors can be used in harsh situations, such as non-ventilated spaces, due to their high strength and longevity. These machines are subject to malfunctions such as short circuits and broken bars. Indeed, for the diagnosis several techniques are offered and used. Novelty of the proposed work provides the use of wavelet analysis technology in a continuous and discrete system to detect faults affecting the rotating part of an induction motor fed by a three-phase inverter. Purpose. This paper aims to present a novel technique for diagnosing broken rotor bars in the low-load, stationary induction machine proposed. The technique is used to address the problem of using the traditional Techniques like Fourier Transforms signal processing algorithm by analyzing the stator current envelope. The suggested method is based on the use of discrete wavelet transform and continuous wavelet transform. Methods. A waveform can be monitored at any frequency of interest using the suggested discrete wavelet transform and continuous wavelet transform. To identify the rotor broken bar fault, stator current frequency spectrum is analyzed and then examined. Based on a suitable index, the algorithm separates the healthy motor from the defective one, with 1, 2 and 3 broken bars at no-load. Results. In comparison to the healthy conditions, the recommended index significantly raises under the broken bars conditions. It can identify the problematic conditions with clarity. The possibility of detecting potential faults has been demonstrated (broken bars), using discrete wavelet transform and continuous wavelet transform. The diagnostic method is adaptable to temporary situations brought on by alterations in load and speed. Performance and efficacy of the suggested diagnostic method are demonstrated through simulation in Simulink® MATLAB environment.Вступ. У різних промислових процесах широко використовуються асинхронні двигуни із короткозамкненим ротором. Ці двигуни можуть використовуватися в суворих умовах, наприклад, в приміщеннях, що не вентилюються, завдяки їх високій міцності і довговічності. Ці машини схильні до несправностей, таких як коротке замикання і зламані стрижні. Зрозуміло, що для діагностики пропонується та використовується кілька методик. Новизна запропонованої роботи полягає у використанні технології вейвлет-аналізу в безперервній і дискретній системі для виявлення несправностей, що впливають на частину асинхронного двигуна, що обертається, що живиться від трифазного інвертора. Мета. У цій статті представлена нова методика діагностики зламаних стрижнів ротора в малонавантаженій стаціонарній асинхронній машині. Цей метод використовується для вирішення проблеми використання традиційних методів, таких як алгоритм обробки сигналів перетворення Фур’є, шляхом аналізу огинаючої струму статора. Пропонований метод заснований на використанні дискретного вейвлет-перетворення та безперервного вейвлет-перетворення. Методи. Форма сигналу може відстежуватися на будь-якій частоті, що цікавить, з використанням запропонованого дискретного вейвлет-перетворення і безперервного вейвлет-перетворення. Для виявлення несправності обриву стрижня ротора частотний спектр статора аналізується, а потім досліджується. На основі відповідного індексу алгоритм відокремлює справний двигун від несправного з 1, 2 і 3 зламаними стрижнями на холостому ході. Результати. Порівняно із нормальними умовами рекомендований показник значно підвищується за умов зламаних стрижнів. Він може чітко визначити проблемні умови. Було продемонстровано можливість виявлення потенційних несправностей (зламані стрижні) з використанням дискретного вейвлет-перетворення та безперервного вейвлет-перетворення. Метод діагностики адаптується до тимчасових ситуацій, викликаних змінами навантаження та швидкості. Працездатність та ефективність запропонованого методу діагностики продемонстровано за допомогою моделювання у середовищі Simulink® MATLAB

    Induction Machine Broken Bar and Stator Short-Circuit Fault Diagnostics Based on Three Phase Stator Current Envelopes

    Get PDF
    A new method for the fault diagnosis of a broken rotor bar and interturn short circuits in induction machines (IMs) is presented. The method is based on the analysis of the three-phase stator current envelopes of IMs using reconstructed phase space transforms. The signatures of each type of fault are created from the three-phase current envelope of each fault. The resulting fault signatures for the new so-called ldquounseen signalsrdquo are classified using Gaussian mixture models and a Bayesian maximum likelihood classifier. The presented method yields a high degree of accuracy in fault identification as evidenced by the given experimental results, which validate this method

    FPGA Implementation of AI-Based Inverter IGBT Open Circuit Fault Diagnosis of Induction Motor Drives

    Get PDF
    In modern industrial manufacturing processes, induction motors are broadly utilized as industrial drives. Online condition monitoring and diagnosis of faults that occur inside and/or outside of the Induction Motor Drive (IMD) system makes the motor highly reliable, helping to avoid unsched-uled downtimes, which cause more revenue loss and disruption of production, thus making it as the extensively used industrial drive. This can be achieved only when the irregularities produced out of the fault circumstance are sensed at that instant itself and diagnosed as to what and where happened for suitable action by the protective equipment employed. This requires intelligent control with high performance scheme. Hence, Field Programmable Gate Array (FPGA) based Neuro-Genetic implementation with Back Propagation Neural Network (BPN) is suggested in this article to diagnose the fault more efficiently and almost instantly. It is reported that the classifica-tion of neural network will provide the output within 2 µs although the clone procedure with mi-crocontroller requires 7 ms. This intelligent control with high performance technique is applied to the IMD fed by Voltage Source Inverter (VSI) to diagnose the fault external to the induction motor occurring in the VSI supply system. The proposed approach was simulated and experimentally validated.publishedVersio

    Comparative analysis of PID and neural network controllers for improving starting torque of wound rotor induction motor

    Get PDF
    Unlike 3-phase squirrel cage induction motor, starting-up of 3-phase wound rotor counter part can be improved by adding an external resistance to the rotor circuit.Thus, leads to reduce starting current and increase starting torque. In this paper two controllers for 3-phase wound rotor induction motor have been proposed include conventional proportional integral derivative (PID)  controller and the other based on artificial neural network (NARMA-L2). A comparison between these controllers has been conducted. It has been shown that starting torque of the motor has been improved, when utilizing the neural network controller compared to the conventional counter  part. It should be noted that MATLAB/SIMULINK has been used to implement both controllers
    corecore