2,066 research outputs found

    Stack Contention-alleviated Precharge Keeper for Pseudo Domino Logic

    Full text link
    The dynamic circuits are supposed to offer superior speed and low power dissipation over static CMOS circuits. The domino logic circuits are used for high system performance but suffer from the precharge pulse degradation. This article provides different design topologies on the domino circuits to overcome the charge sharing and charge leakage with reference to the power dissipation and delay. The precharge keeper circuit has been proposed such that the keeper transistors also work as the precharge transistors to realize multiple output function. The performance improvement of the circuit\u27s analysis have been done for adders and logic gates using HSPICE tool. The proposed keeper techniques reveal lower power dissipation and lesser delay over the standard keeper circuit with less transistor count for different process variation

    Stack Contention-alleviated Precharge Keeper for Pseudo Domino Logic

    Get PDF
    The dynamic circuits are supposed to offer superior speed and low power dissipation over static CMOS circuits. The domino logic circuits are used for high system performance but suffer from the precharge pulse degradation. This article provides different design topologies on the domino circuits to overcome the charge sharing and charge leakage with reference to the power dissipation and delay. The precharge keeper circuit has been proposed such that the keeper transistors also work as the precharge transistors to realize multiple output function. The performance improvement of the circuit’s analysis have been done for adders and logic gates using HSPICE tool. The proposed keeper techniques reveal lower power dissipation and lesser delay over the standard keeper circuit with less transistor count for different process variation

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Ultra low power high speed domino logic circuit by using FinFET technology

    Get PDF
    Scaling of the MOSFET face greater challenge by extreme power density due to leakage current in ultra deep sub-micron (UDSM) technology. To overcome from this situation double gate device like FinFET is used which has excellent control over the thin silicon fins with two electrically coupled gate, which mitigate shorter channel effect and exponentially reduces the leakage current. In this research paper utilize the property of FinFET in domino logic, for high speed operation and reduction of power consumption in wide fan-in OR gate. Proposed circuit is simulated in FinFET technology by BISM4 model using HSPICE at 32nm process technology at 250C with CL=1pF at 100MHz frequency. For 8 and 16 input OR gate we save average power 11.5%,11.39% in SFLD, 22.97%, 18.12% in HSD, 30.90%, 34.57% in CKD in SG mode and for LP mode 11.26%, 15.78% in SFLD, 19.74%, 17.94% in HSD, 45.23%, 34.69% in CKD respectivel

    Tertiary-Tree 12-GHz 32-bit Adder in 65nm Technology

    Get PDF
    This paper presents a new 32-bit adder structure with 12 GHz low-power operation in 65nm technology. The Fast Conditional Sparse-Tree Logic (FCSL) is based on modifying the initial Sparse-Tree architecture [1] to enhance its speed using tertiary trees and applying a carry-select scheme in some of the more significant bits. This design has been compared with the Sparse-Tree adder and the Low-Voltage Swing adder in terms of speed and power. It has been shown that speed can be improved using FCSL architecture while keeping the power at a comparable level

    Analysis and application of improved feedthrough logic

    Get PDF
    Continuous technology scaling and increased frequency of operation of VLSI circuits leads to increase in power density which raises thermal management problem. Therefore design of low power VLSI circuit technique is a challenging task without sacrificing its performance. This thesis presents the design of a low power dynamic circuit using a new CMOS domino logic family called feedthrough (FTL) logic. Dynamic logic circuits are more significant because of its faster speed and lesser transistor requirement as compared to static CMOS logic circuits. The need for faster circuits compels designers to use FTL as compared static and domino CMOS logic and the requirement of output inverter for cascading of various logic blocks in domino logic are eliminated in the proposed design. The proposed circuit for low power (LP-FTL) improves dynamic power consumption as compared to the existing FTL and to further improve its speed we propose another circuit (HS-FTL). This logic family improves speed at the cost of dynamic power consumption and area. Proposed modified FTL circuit families provide better PDP as compared to the existing FTL. Simulation results of both the proposed circuit using 0.18 µm, 1.8 V CMOS process technology indicate that the LP-FTL structure reduces the dynamic power approximately by 42% and the HS-FTL structure achieves a speed up- 1.4 for 10-stage of inverters and 8-bit ripple carry adder in comparison to existing FTL logic. Furthermore, we present various circuit design techniques to improve noise tolerance of the proposed FTL logic families. Noise in deep submicron technology limits the reliability and performance of ICs. The ANTE (average noise threshold energy) metric is used for the analysis of noise tolerance of proposed FTL. A 2-input NAND and NOR gate is designed by the proposed technique. Simulation results for a 2-input NAND gate at 0.18-µm, 1.8 V CMOS process technology show that the proposed noise tolerant circuit achieves 1.79X ANTE improvement along with the reduction in leakage power. Continuous scaling of technology towards the nanometer range significantly increases leakage current level and the effect of noise. This research can be further extended for performance optimization in terms of power, speed, area and noise immunity

    High-speed dynamic domino circuit implemented with gaas mesfets

    Get PDF
    A dynamic logic circuit (AND or OR) utilizes one depletion-mode metal-semiconductor FET for precharging an internal node A, and a plurality of the same type of FETs in series, or a FET in parallel with one or more of the series connected FETs for implementing the logic function. A pair of FETs are connected to provide an output inverter with two series diodes for level shift. A coupling capacitor may be employed with a further FET to provide level shifting required between the inverter and the logic circuit output terminal. These circuits may be cascaded to form a domino chain

    DESIGN OF NEW HIGH SPEED MULTI OUTPUT CARRY LOOK-AHEAD ADDERS

    Get PDF
    The carry look-ahead adders are designed till now by using standard 4 bit Manchester carry chain. Due to its limited carry chain length, the carries of the adders are computed using 4 bit carry chain. This leads to slow down the operation. A high speed 8 bit (MCC) adder in multi output domino CMOS logic is designed in this thesis. Due to its limited carry chain length this high speed MCC uses 2 separate 4-bit MCC. The 2 MCC namely odd carry chain and even carry chain are computed in parallel to increase the speed of the operation. This technique has been applied for the design of 8 bit adders in multi output domino logic and the simulation results are verified. Results prove that 8 bit MCC produces less delay compared to conventional 4 bit delay. The reduced delay realizes better speed compared to the conventional designs. The existing design and the previous designs are designed and simulated using Mentor Graphics. The delay of these designs is compared with 8 bit input and with 50 nm technology file. Implementation results reveal that the high speed comparator has delay of 37.47% less compared to the conventional designs used for comparison when operated at 50 MHz

    Power Reductions with Energy Recovery Using Resonant Topologies

    Get PDF
    The problem of power densities in system-on-chips (SoCs) and processors has become more exacerbated recently, resulting in high cooling costs and reliability issues. One of the largest components of power consumption is the low skew clock distribution network (CDN), driving large load capacitance. This can consume as much as 70% of the total dynamic power that is lost as heat, needing elaborate sensing and cooling mechanisms. To mitigate this, resonant clocking has been utilized in several applications over the past decade. An improved energy recovering reconfigurable generalized series resonance (GSR) solution with all the critical support circuitry is developed in this work. This LC resonant clock driver is shown to save about 50% driver power (\u3e40% overall), on a 22nm process node and has 50% less skew than a non-resonant driver at 2GHz. It can operate down to 0.2GHz to support other energy savings techniques like dynamic voltage and frequency scaling (DVFS). As an example, GSR can be configured for the simpler pulse series resonance (PSR) operation to enable further power saving for double data rate (DDR) applications, by using de-skewing latches instead of flip-flop banks. A PSR based subsystem for 40% savings in clocking power with 40% driver active area reduction xii is demonstrated. This new resonant driver generates tracking pulses at each transition of clock for dual edge operation across DVFS. PSR clocking is designed to drive explicit-pulsed latches with negative setup time. Simulations using 45nm IBM/PTM device and interconnect technology models, clocking 1024 flip-flops show the reductions, compared to non-resonant clocking. DVFS range from 2GHz/1.3V to 200MHz/0.5V is obtained. The PSR frequency is set \u3e3× the clock rate, needing only 1/10th the inductance of prior-art LC resonance schemes. The skew reductions are achieved without needing to increase the interconnect widths owing to negative set-up times. Applications in data circuits are shown as well with a 90nm example. Parallel resonant and split-driver non-resonant configurations as well are derived from GSR. Tradeoffs in timing performance versus power, based on theoretical analysis, are compared for the first time and verified. This enables synthesis of an optimal topology for a given application from the GSR
    corecore