13 research outputs found

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Super-orthogonal space-time turbo codes in Rayleigh fading channels.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2005.The vision of anytime, anywhere communications coupled by the rapid growth of wireless subscribers and increased volumes of internet users, suggests that the widespread demand for always-on access data, is sure to be a major driver for the wireless industry in the years to come. Among many cutting edge wireless technologies, a new class of transmission techniques, known as Multiple-Input Multiple-Output (MIMO) techniques, has emerged as an important technology leading to promising link capacity gains of several fold increase in data rates and spectral efficiency. While the use of MIMO techniques in the third generation (3G) standards is minimal, it is anticipated that these technologies will play an important role in the physical layer of fixed and fourth generation (4G) wireless systems. Concatenated codes, a class of forward error correction codes, of which Turbo codes are a classical example, have been shown to achieve reliable performance which approach the Shannon limit. An effective and practical way to approach the capacity of MIMO wireless channels is to employ space-time coding (STC). Space-Time coding is based on introducing joint correlation in transmitted signals in both the space and time domains. Space-Time Trellis Codes (STTCs) have been shown to provide the best trade-off in terms of coding gain advantage, improved data rates and computational complexity. Super-Orthogonal Space-Time Trellis Coding (SOSTTC) is the recently proposed form of space-time trellis coding which outperforms its predecessor. The code has a systematic design method to maximize the coding gain for a given rate, constellation size, and number of states. Simulation and analytical results are provided to justify the improved performance. The main focus of this dissertation is on STTCs, SOSTTCs and their concatenated versions in quasi-static and rapid Rayleigh fading channels. Turbo codes and space-time codes have made significant impact in terms of the theory and practice by closing the gap on the Shannon limit and the large capacity gains provided by the MIMO channel, respectively. However, a convincing solution to exploit the capabilities provided by a MIMO channel would be to build the turbo processing principle into the design of MIMO architectures. The field of concatenated STTCs has already received much attention and has shown improved performance over conventional STTCs. Recently simple and double concatenated STTCs structures have shown to provide a further improvement performance. Motivated by this fact, two concatenated SOSTTC structures are proposed called Super-orthogonal space-time turbo codes. The performance of these new concatenated SOSTTC is compared with that of concatenated STTCs and conventional SOSTTCs with simulations in Rayleigh fading channels. It is seen that the SOST-CC system outperforms the ST-CC system in rapid fading channels, whereas it maintains performance similar to that in quasi-static. The SOST-SC system has improved performance for larger frame lengths and overall maintains similar performance with ST-SC systems. A further investigation of these codes with channel estimation errors is also provided

    Design and Software Validation of Coded Communication Schemes using Multidimensional Signal Sets without Constellation Expansion Penalty in Band-Limited Gaussian and Fading Channels

    Get PDF
    It has been well reported that the use of multidimensional constellation signals can help to reduce the bit error rate in Additive Gaussian channels by using the hyperspace geometry more efficiently. Similarly, in fading channels, dimensionality provides an inherent signal space diversity (distinct components between two constellations points), so the amplitude degradation of the signal are combated significantly better. Moreover, the set of n-dimensional signals also provides great compatibility with various Trellis Coded modulation schemes: N-dimensional signaling joined with a convolutional encoder uses fewer redundant bits for each 2D signaling interval, and increases intra-subset minimum squared Euclidean distance (MSED) to approach the ultimate capacity limit predicted by Shannon\u27s theory. The multidimensional signals perform better for the same complexity than two-dimensional schemes. The inherent constellation expansion penalty factor paid for using classical mapping structures can be decreased by enlarging the constellation\u27s dimension. In this thesis, a multidimensional signal set construction paradigm that completely avoids the constellation expansion penalty is used in Band-limited channels and in fading channels. As such, theoretical work on performance analysis and computer simulations for Quadrature-Quadrature Phase Shift Keying (Q2PSK), Constant Envelope (CE) Q2PSK, and trellis-coded 16D CEQ2PSK in ideal band-limited channels of various bandwidths is presented along with a novel discussion on visualization techniques for 4D Quadrature-Quadrature Phase Shift Keying (Q2PSK), Saha\u27s Constant Envelope (CE) Q2PSK, and Cartwright\u27s CEQ2PSK in ideal band-limited channels. Furthermore, a metric designed to be used in fading channels, with Hamming Distance (HD) as a primary concern and Euclidean distance (ED) as secondary is also introduced. Simulation results show that the 16D TCM CEQ2PSK system performs well in channels with AWGN and fading, even with the simplest convolutional encoder tested; achievable coding gains using 16-D CEQ2PSK Expanded TCM schemes under various conditions are finally reported

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Harvesting time-frequency-space diversity with coded modulation for underwater acoustic communications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references (leaves 172-180).The goal of this thesis is to design a low-complexity, high data-rate acoustic communications system with robust performance under various channel conditions. The need for robust performance emerges because underwater acoustic (UWA) channels have time-varying statistics, thus a coded modulation scheme optimally designed for a specific channel model will be suboptimal when the channel statistics change. A robust approach should use a coded modulation scheme that provides good performance in both additive white Gaussian noise (AWGN) and Rayleigh fading channels (and, consequently in the Rice fading channel, an intermediate channel model between the latter two). Hence, high data-rate coded modulation schemes should exhibit both large free Euclidean and Hamming distances. In addition, coded modulation is regarded as a way to achieve time diversity over interleaved flat fading channels. UWA channels offer additional diversity gains in both frequency and space; therefore a system that exploits diversity in all three domains is highly desirable. Two systems with the same bit-rate and complexity but different free Euclidean and Hamming distances are designed and compared. The first system combines Trellis Coded Modulation (TCM) based on an 8-PSK signal set, symbol interleaving and orthogonal frequency-division multiplexing (OFDM). The second system combines bit-interleaved coded modulation (BICM), based on a convolutional code and a 16-QAM signal set, with OFDM.(cont.) Both systems are combined with specific space-time block codes (STBC) when two or three transmit antennas are used. Moreover, pilot-symbol-aided channel estimation is performed by using a robust 2-D Wiener filter, which copes with channel model mismatch by employing appropriate time and frequency correlation functions. The following result was obtained by testing the aforementioned systems using both simulated and experimental data from RACE '08: the BICM scheme performs better when the UWA channel exhibits limited spatial diversity. This result implies that coded modulation schemes emphasizing higher Hamming distances are preferred when there is no option for many receive/transmit hydrophones. The TCM scheme, on the other hand, becomes a better choice when the UWA channel demonstrates a high spatial diversity order. This result implies that coded modulation schemes emphasizing higher free Euclidean distances are preferred when multiple receive/transmit hydrophones are deployed.by Konstantinos Pelekanakis.Ph.D

    High capacity high spectral efficiency transmission techniques in wireless broadband systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Uncoded space-time labeling diversity with three transmit antennas: symbol mapping designs and error performance analysis.

    Get PDF
    Doctoral Degrees. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications on page iii
    corecore