5,382 research outputs found

    An adaptive GMsFEM for high-contrast flow problems

    Full text link
    In this paper, we derive an a-posteriori error indicator for the Generalized Multiscale Finite Element Method (GMsFEM) framework. This error indicator is further used to develop an adaptive enrichment algorithm for the linear elliptic equation with multiscale high-contrast coefficients. The GMsFEM, which has recently been introduced in [12], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) the construction of the online space (the latter for parameter-dependent problems). In [12], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we study an adaptive enrichment procedure and derive an a-posteriori error indicator which gives an estimate of the local error over coarse grid regions. We consider two kinds of error indicators where one is based on the L2L^2-norm of the local residual and the other is based on the weighted H−1H^{-1}-norm of the local residual where the weight is related to the coefficient of the elliptic equation. We show that the use of weighted H−1H^{-1}-norm residual gives a more robust error indicator which works well for cases with high contrast media. The convergence analysis of the method is given. In our analysis, we do not consider the error due to the fine-grid discretization of local problems and only study the errors due to the enrichment. Numerical results are presented that demonstrate the robustness of the proposed error indicators.Comment: 26 page

    Generalized Multiscale Finite Element Methods for problems in perforated heterogeneous domains

    Get PDF
    Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales (see Figure 1 for the illustration of a perforated domain). Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works [14, 18, 17], where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can accurately approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domain; (2) elasticity equation in perforated domain; and (3) Stokes equations in perforated domain. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere

    Reduced basis method for source mask optimization

    Full text link
    Image modeling and simulation are critical to extending the limits of leading edge lithography technologies used for IC making. Simultaneous source mask optimization (SMO) has become an important objective in the field of computational lithography. SMO is considered essential to extending immersion lithography beyond the 45nm node. However, SMO is computationally extremely challenging and time-consuming. The key challenges are due to run time vs. accuracy tradeoffs of the imaging models used for the computational lithography. We present a new technique to be incorporated in the SMO flow. This new approach is based on the reduced basis method (RBM) applied to the simulation of light transmission through the lithography masks. It provides a rigorous approximation to the exact lithographical problem, based on fully vectorial Maxwell's equations. Using the reduced basis method, the optimization process is divided into an offline and an online steps. In the offline step, a RBM model with variable geometrical parameters is built self-adaptively and using a Finite Element (FEM) based solver. In the online step, the RBM model can be solved very fast for arbitrary illumination and geometrical parameters, such as dimensions of OPC features, line widths, etc. This approach dramatically reduces computational costs of the optimization procedure while providing accuracy superior to the approaches involving simplified mask models. RBM furthermore provides rigorous error estimators, which assure the quality and reliability of the reduced basis solutions. We apply the reduced basis method to a 3D SMO example. We quantify performance, computational costs and accuracy of our method.Comment: BACUS Photomask Technology 201

    A partitioned model order reduction approach to rationalise computational expenses in multiscale fracture mechanics

    Get PDF
    We propose in this paper an adaptive reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No \textit{a priori} knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture.Comment: Submitted for publication in CMAM
    • …
    corecore