18 research outputs found

    I/O port macromodelling

    Get PDF
    3D electromagnetic modelling and simulation of various Printed Circuit Board (PCB) components is an important technique for characterizing the Signal Integrity (SI) and Electromagnetic Compatibility (EMC) issues present in a PCB. However, due to limited computational resource and the complexity of the integrated circuits, it is currently not possible to fully model a complete PCB system with 3D electromagnetic solvers. An effort has been made to fully model the PCB with all its components and their S-parameters has been derived so as to integrate these S-parameters in 1D, 2D static or quasi-static field solver or circuit solver tool. The novelty of this thesis is the development and verification of active circuit such as Input and Output buffers and passive channel components such as interconnects, via and connectors and deriving their S-parameters in order to model and characterize the complete PCB using 3D full field solver based on Transmission Line Matrix modelling (TLM) method. An integration of Input/Output (I/O) port in the 3D full field modelling method allows for modelling of the complete PCB system without being computationally expensive. This thesis presents a method for integration of Input/Output port in the 3D time domain modelling environment. Several software tools are available in the market which can characterize these PCBs in the frequency as well as the time domain using 1D, 2D techniques or using circuit solver such as spice. The work in this thesis looks at extending these 1D and 2D techniques for 3D Electromagnetic solvers in the time domain using the TLM technique for PCB analysis. The modelling technique presented in this thesis is based on in-house developed 3D TLM method along with a developed behavioral Integrated Circuit (IC) – macromodel. The method has been applied to a wide variety of PCB topologies along with a range of IC packages to fully validate the approach. The method has also been applied to show the switching effect arising out of the crosstalk in a logic device apart from modelling various discontinuities of PCB interconnects in the form of S11 and S21 parameters. The proposed novel TLM based technique has been selected based on simplification of its approach, electrical equivalence (rather than complex mathematical functions of Maxwell's electromagnetic theory), time domain analysis for transients in a PCB with an increased accuracy over other available methods in the literature. On the experimental side two, four and six layered PCBs with various interconnect discontinuities such as straight line, right angle, fan-out and via and IC packages such as SOT-23 (DBV), SC-70 (DCK) and SOT-553 (DRL) has been designed and manufactured. The modelling results have been verified with the experimental results of these PCBs and other commercial software such as HSPICE, CST design studio available in the market. While characterizing the SI issues, these modelling results can also help in analyzing conducted and radiated EMC/EMI problems to meet various EMC regulations such as CE, FCC around the world

    I/O port macromodelling

    Get PDF
    3D electromagnetic modelling and simulation of various Printed Circuit Board (PCB) components is an important technique for characterizing the Signal Integrity (SI) and Electromagnetic Compatibility (EMC) issues present in a PCB. However, due to limited computational resource and the complexity of the integrated circuits, it is currently not possible to fully model a complete PCB system with 3D electromagnetic solvers. An effort has been made to fully model the PCB with all its components and their S-parameters has been derived so as to integrate these S-parameters in 1D, 2D static or quasi-static field solver or circuit solver tool. The novelty of this thesis is the development and verification of active circuit such as Input and Output buffers and passive channel components such as interconnects, via and connectors and deriving their S-parameters in order to model and characterize the complete PCB using 3D full field solver based on Transmission Line Matrix modelling (TLM) method. An integration of Input/Output (I/O) port in the 3D full field modelling method allows for modelling of the complete PCB system without being computationally expensive. This thesis presents a method for integration of Input/Output port in the 3D time domain modelling environment. Several software tools are available in the market which can characterize these PCBs in the frequency as well as the time domain using 1D, 2D techniques or using circuit solver such as spice. The work in this thesis looks at extending these 1D and 2D techniques for 3D Electromagnetic solvers in the time domain using the TLM technique for PCB analysis. The modelling technique presented in this thesis is based on in-house developed 3D TLM method along with a developed behavioral Integrated Circuit (IC) – macromodel. The method has been applied to a wide variety of PCB topologies along with a range of IC packages to fully validate the approach. The method has also been applied to show the switching effect arising out of the crosstalk in a logic device apart from modelling various discontinuities of PCB interconnects in the form of S11 and S21 parameters. The proposed novel TLM based technique has been selected based on simplification of its approach, electrical equivalence (rather than complex mathematical functions of Maxwell's electromagnetic theory), time domain analysis for transients in a PCB with an increased accuracy over other available methods in the literature. On the experimental side two, four and six layered PCBs with various interconnect discontinuities such as straight line, right angle, fan-out and via and IC packages such as SOT-23 (DBV), SC-70 (DCK) and SOT-553 (DRL) has been designed and manufactured. The modelling results have been verified with the experimental results of these PCBs and other commercial software such as HSPICE, CST design studio available in the market. While characterizing the SI issues, these modelling results can also help in analyzing conducted and radiated EMC/EMI problems to meet various EMC regulations such as CE, FCC around the world

    Transient simulation of complex electronic circuits and systems operating at ultra high frequencies

    Get PDF
    The electronics industry worldwide faces increasingly difficult challenges in a bid to produce ultra-fast, reliable and inexpensive electronic devices. Electronic manufacturers rely on the Electronic Design Automation (EDA) industry to produce consistent Computer A id e d Design (CAD) simulation tools that w ill enable the design of new high-performance integrated circuits (IC), the key component of a modem electronic device. However, the continuing trend towards increasing operational frequencies and shrinking device sizes raises the question of the capability of existing circuit simulators to accurately and efficiently estimate circuit behaviour. The principle objective of this thesis is to advance the state-of-art in the transient simulation of complex electronic circuits and systems operating at ultra high frequencies. Given a set of excitations and initial conditions, the research problem involves the determination of the transient response o f a high-frequency complex electronic system consisting of linear (interconnects) and non-linear (discrete elements) parts with greatly improved efficien cy compared to existing methods and with the potential for very high accuracy in a way that permits an effective trade-off between accuracy and computational complexity. High-frequency interconnect effects are a major cause of the signal degradation encountered b y a signal propagating through linear interconnect networks in the modem IC. Therefore, the development of an interconnect model that can accurately and efficiently take into account frequency-dependent parameters of modem non-uniform interconnect is of paramount importance for state-of-art circuit simulators. Analytical models and models based on a set of tabulated data are investigated in this thesis. Two novel, h igh ly accurate and efficient interconnect simulation techniques are developed. These techniques combine model order reduction methods with either an analytical resonant model or an interconnect model generated from frequency-dependent sparameters derived from measurements or rigorous full-wave simulation. The latter part o f the thesis is concerned with envelope simulation. The complex mixture of profoundly different analog/digital parts in a modern IC gives rise to multitime signals, where a fast changing signal arising from the digital section is modulated by a slower-changing envelope signal related to the analog part. A transient analysis of such a circuit is in general very time-consuming. Therefore, specialised methods that take into account the multi-time nature o f the signal are required. To address this issue, a novel envelope simulation technique is developed. This technique combines a wavelet-based collocation method with a multi-time approach to result in a novel simulation technique that enables the desired trade-off between the required accuracy and computational efficiency in a simple and intuitive way. Furthermore, this new technique has the potential to greatly reduce the overall design cycle

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Fast algorithms for ill-conditioned dense matrix problems in VLSI interconnect and substrate modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (leaves 131-135).by Mike Chuan Chou.Ph.D

    Analyse et caractérisation des couplages substrat et de la connectique dans les circuits 3D : Vers des modÚles compacts

    Get PDF
    The 3D integration is the most promising technological solution to track the level of integration dictated by Moore's Law (see more than Moore, Moore versus more). It leads to important research for a dozen years. It can superimpose different circuits and components in one box. Its main advantage is to allow a combination of heterogeneous and highly specialized technologies for the establishment of a complete system, while maintaining a high level of performance with very short connections between the different circuits. The objective of this work is to provide consistent modeling via crossing, and / or contacts in the substrate, with various degrees of finesse / precision to allow the high-level designer to manage and especially to optimize the partitioning between the different strata. This modelization involves the development of multiple views at different levels of abstraction: the physical model to "high level" model. This would allow to address various issues faced in the design process: - The physical model using an electromagnetic simulation based on 2D or 3D ( finite element solver ) is used to optimize the via (materials, dimensions etc..) It determines the electrical performance of the via, including high frequency. Electromagnetic simulations also quantify the coupling between adjacent via. - The analytical compact of via their coupling model, based on a description of transmission line or Green cores is used for the simulations at the block level and Spice type simulations. Analytical models are often validated against measurements and / or physical models.L’intĂ©gration 3D est la solution technologique la plus prometteuse pour suivre le niveau d’intĂ©gration dictĂ©e par la loi de Moore (cf. more than Moore, versus more Moore). Elle entraine des travaux de recherche importants depuis une douzaine d’annĂ©es. Elle permet de superposer diffĂ©rents circuits et composants dans un seul boitier. Son principal avantage est de permettre une association de technologies hĂ©tĂ©rogĂšnes et trĂšs spĂ©cialisĂ©es pour la constitution d’un systĂšme complet, tout en prĂ©servant un trĂšs haut niveau de performance grĂące Ă  des connexions trĂšs courtes entre ces diffĂ©rents circuits. L’objectif de ce travail est de fournir des modĂ©lisations cohĂ©rentes de via traversant, ou/et de contacts dans le substrat, avec plusieurs degrĂ©s de finesse/prĂ©cision, pour permettre au concepteur de haut niveau de gĂ©rer et surtout d’optimiser le partitionnement entre les diffĂ©rentes strates. Cette modĂ©lisation passe par le dĂ©veloppement de plusieurs vues Ă  diffĂ©rents niveaux d’abstraction: du modĂšle physique au modĂšle « haut niveau ». Elle devait permettre de rĂ©pondre Ă  diffĂ©rentes questions rencontrĂ©es dans le processus de conception :- le modĂšle physique de via basĂ© sur une simulation Ă©lectromagnĂ©tique 2D ou 3D (solveur « Ă©lĂ©ments finis ») est utilisĂ© pour optimiser l’architecture du via (matĂ©riaux, dimensions etc.) Il permet de dĂ©terminer les performances Ă©lectriques des via, notamment en haute frĂ©quence. Les simulations Ă©lectromagnĂ©tiques permettent Ă©galement de quantifier le couplage entre via adjacents. - le modĂšle compact analytique de via et de leur couplage, basĂ© sur une description de type ligne de transmission ou noyaux de Green, est utilisĂ© pour les simulations au niveau bloc, ainsi que des simulations de type Spice. Les modĂšles analytiques sont souvent validĂ©s par rapport Ă  des mesures et/ou des modĂšles physiques

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Efficient FPGA implementation and power modelling of image and signal processing IP cores

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are the technology of choice in a number ofimage and signal processing application areas such as consumer electronics, instrumentation, medical data processing and avionics due to their reasonable energy consumption, high performance, security, low design-turnaround time and reconfigurability. Low power FPGA devices are also emerging as competitive solutions for mobile and thermally constrained platforms. Most computationally intensive image and signal processing algorithms also consume a lot of power leading to a number of issues including reduced mobility, reliability concerns and increased design cost among others. Power dissipation has become one of the most important challenges, particularly for FPGAs. Addressing this problem requires optimisation and awareness at all levels in the design flow. The key achievements of the work presented in this thesis are summarised here. Behavioural level optimisation strategies have been used for implementing matrix product and inner product through the use of mathematical techniques such as Distributed Arithmetic (DA) and its variations including offset binary coding, sparse factorisation and novel vector level transformations. Applications to test the impact of these algorithmic and arithmetic transformations include the fast Hadamard/Walsh transforms and Gaussian mixture models. Complete design space exploration has been performed on these cores, and where appropriate, they have been shown to clearly outperform comparable existing implementations. At the architectural level, strategies such as parallelism, pipelining and systolisation have been successfully applied for the design and optimisation of a number of cores including colour space conversion, finite Radon transform, finite ridgelet transform and circular convolution. A pioneering study into the influence of supply voltage scaling for FPGA based designs, used in conjunction with performance enhancing strategies such as parallelism and pipelining has been performed. Initial results are very promising and indicated significant potential for future research in this area. A key contribution of this work includes the development of a novel high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called Functional Level Power Analysis and Modelling (FLPAM). FLPAM is scalable, platform independent and compares favourably with existing approaches. A hybrid, top-down design flow paradigm integrating FLPAM with commercially available design tools for systematic optimisation of IP cores has also been developed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore