22,042 research outputs found

    Twist versus Nonlinear Stacking in Short DNA Molecules

    Full text link
    The denaturation of the double helix is a template for fundamental biological functions such as replication and transcription involving the formation of local fluctuational openings. The denaturation transition is studied for heterogeneous short sequences of DNA, i.e. 100\sim 100 base pairs, in the framework of a mesoscopic Hamiltonian model which accounts for the helicoidal geometry of the molecule. The theoretical background for the application of the path integral formalism to predictive analysis of the molecule thermodynamical properties is discussed. The base pair displacements with respect to the ground state are treated as paths whose temperature dependent amplitudes are governed by the thermal wavelength. The ensemble of base pairs paths is selected, at any temperature, consistently with both the model potential and the second law of thermodynamics. The partition function incorporates the effects of the base pair thermal fluctuations which become stronger close to the denaturation. The transition appears as a gradual phenomenon starting from the molecule segments rich in adenine-thymine base pairs. Computing the equilibrium thermodynamics, we focus on the interplay between twisting of the complementary strands around the molecule axis and nonlinear stacking potential: it is shown that the latter affects the melting profiles only if the rotational degrees of freedom are included in the Hamiltonian. The use of ladder Hamiltonian models for the DNA complementary strands in the pre-melting regime is questioned.Comment: Journal of Theoretical Biology (2014

    Path Integral Method for DNA Denaturation

    Full text link
    The statistical physics of homogeneous DNA is investigated by the imaginary time path integral formalism. The base pair stretchings are described by an ensemble of paths selected through a macroscopic constraint, the fulfillement of the second law of thermodynamics. The number of paths contributing to the partition function strongly increases around and above a specific temperature TcT^*_c whereas the fraction of unbound base pairs grows continuosly around and above TcT^*_c. The latter is identified with the denaturation temperature. Thus, the separation of the two complementary strands appears as a highly cooperative phenomenon displaying a smooth crossover versus TT. The thermodynamical properties have been computed in a large temperature range by varying the size of the path ensemble at the lower bound of the range. No significant physical dependence on the system size has been envisaged. The entropy grows continuosly versus TT while the specific heat displays a remarkable peak at TcT^*_c. The location of the peak versus TT varies with the stiffness of the anharmonic stacking interaction along the strand. The presented results suggest that denaturation in homogeneous DNA has the features of a second order phase transition. The method accounts for the cooperative behavior of a very large number of degrees of freedom while the computation time is kept within a reasonable limit.Comment: Physical Review E 2009 in pres

    Thermodynamics of Twisted DNA with Solvent Interaction

    Full text link
    The imaginary time path integral formalism is applied to a nonlinear Hamiltonian for a short fragment of heterogeneous DNA with a stabilizing solvent interaction term. Torsional effects are modeled by a twist angle between neighboring base pairs stacked along the molecule backbone. The base pair displacements are described by an ensemble of temperature dependent paths thus incorporating those fluctuational effects which shape the multisteps thermal denaturation. By summing over 107108\sim 10^7 - 10^8 base pair paths, a large number of double helix configurations is taken into account consistently with the physical requirements of the model potential. The partition function is computed as a function of the twist. It is found that the equilibrium twist angle, peculiar of B-DNA at room temperature, yields the stablest helicoidal geometry against thermal disruption of the base pair hydrogen bonds. This result is corroborated by the computation of thermodynamical properties such as fractions of open base pairs and specific heat.Comment: The Journal of Chemical Physics (2011) in pres

    A Comparative Analysis of Ensemble Classifiers: Case Studies in Genomics

    Full text link
    The combination of multiple classifiers using ensemble methods is increasingly important for making progress in a variety of difficult prediction problems. We present a comparative analysis of several ensemble methods through two case studies in genomics, namely the prediction of genetic interactions and protein functions, to demonstrate their efficacy on real-world datasets and draw useful conclusions about their behavior. These methods include simple aggregation, meta-learning, cluster-based meta-learning, and ensemble selection using heterogeneous classifiers trained on resampled data to improve the diversity of their predictions. We present a detailed analysis of these methods across 4 genomics datasets and find the best of these methods offer statistically significant improvements over the state of the art in their respective domains. In addition, we establish a novel connection between ensemble selection and meta-learning, demonstrating how both of these disparate methods establish a balance between ensemble diversity and performance.Comment: 10 pages, 3 figures, 8 tables, to appear in Proceedings of the 2013 International Conference on Data Minin

    Phason elasticity of a three-dimensional quasicrystal: transfer-matrix method

    Full text link
    We introduce a new transfer matrix method for calculating the thermodynamic properties of random-tiling models of quasicrystals in any number of dimensions, and describe how it may be used to calculate the phason elastic properties of these models, which are related to experimental measurables such as phason Debye-Waller factors, and diffuse scattering wings near Bragg peaks. We apply our method to the canonical-cell model of the icosahedral phase, making use of results from a previously-presented calculation in which the possible structures for this model under specific periodic boundary conditions were cataloged using a computational technique. We give results for the configurational entropy density and the two fundamental elastic constants for a range of system sizes. The method is general enough allow a similar calculation to be performed for any other random tiling model.Comment: 38 pages, 3 PostScript figures, self-expanding uuencoded compressed tar file, LaTeX using RevTeX macros and epsfig.st

    Tree-based Intelligent Intrusion Detection System in Internet of Vehicles

    Full text link
    The use of autonomous vehicles (AVs) is a promising technology in Intelligent Transportation Systems (ITSs) to improve safety and driving efficiency. Vehicle-to-everything (V2X) technology enables communication among vehicles and other infrastructures. However, AVs and Internet of Vehicles (IoV) are vulnerable to different types of cyber-attacks such as denial of service, spoofing, and sniffing attacks. In this paper, an intelligent intrusion detection system (IDS) is proposed based on tree-structure machine learning models. The results from the implementation of the proposed intrusion detection system on standard data sets indicate that the system has the ability to identify various cyber-attacks in the AV networks. Furthermore, the proposed ensemble learning and feature selection approaches enable the proposed system to achieve high detection rate and low computational cost simultaneously.Comment: Accepted in IEEE Global Communications Conference (GLOBECOM) 201

    Computing the Absolute Gibbs Free Energy in Atomistic Simulations: Applications to Defects in Solids

    Get PDF
    The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial. As a consequence, all too often the potential energy of the system is used as a proxy, overlooking entropic and anharmonic effects. Here we discuss a combination of different thermodynamic integration routes to obtain the absolute Gibbs free energy of a solid system starting from a harmonic reference state. This approach enables the direct comparison between the free energy of different structures, circumventing the need to sample the transition paths between them. We showcase this thermodynamic integration scheme by computing the Gibbs free energy associated with a vacancy in BCC iron, and the intrinsic stacking fault free energy of nickel. These examples highlight the pitfalls of estimating the free energy of crystallographic defects only using the minimum potential energy, which overestimates the vacancy free energy by 60% and the stacking-fault energy by almost 300% at temperatures close to the melting point
    corecore