5,517 research outputs found

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    Quantum Graphical Models and Belief Propagation

    Get PDF
    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersely-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.Comment: 58 pages, 9 figure

    Complexity Analysis of Reed-Solomon Decoding over GF(2^m) Without Using Syndromes

    Get PDF
    For the majority of the applications of Reed-Solomon (RS) codes, hard decision decoding is based on syndromes. Recently, there has been renewed interest in decoding RS codes without using syndromes. In this paper, we investigate the complexity of syndromeless decoding for RS codes, and compare it to that of syndrome-based decoding. Aiming to provide guidelines to practical applications, our complexity analysis differs in several aspects from existing asymptotic complexity analysis, which is typically based on multiplicative fast Fourier transform (FFT) techniques and is usually in big O notation. First, we focus on RS codes over characteristic-2 fields, over which some multiplicative FFT techniques are not applicable. Secondly, due to moderate block lengths of RS codes in practice, our analysis is complete since all terms in the complexities are accounted for. Finally, in addition to fast implementation using additive FFT techniques, we also consider direct implementation, which is still relevant for RS codes with moderate lengths. Comparing the complexities of both syndromeless and syndrome-based decoding algorithms based on direct and fast implementations, we show that syndromeless decoding algorithms have higher complexities than syndrome-based ones for high rate RS codes regardless of the implementation. Both errors-only and errors-and-erasures decoding are considered in this paper. We also derive tighter bounds on the complexities of fast polynomial multiplications based on Cantor's approach and the fast extended Euclidean algorithm.Comment: 11 pages, submitted to EURASIP Journal on Wireless Communications and Networkin
    • …
    corecore