2,294 research outputs found

    Surface parameterization over regular domains

    Get PDF
    Surface parameterization has been widely studied and it has been playing a critical role in many geometric processing tasks in graphics, computer-aided design, visualization, vision, physical simulation and etc. Regular domains, such as polycubes, are favored due to their structural regularity and geometric simplicity. This thesis focuses on studying the surface parameterization over regular domains, i.e. polycubes, and develops effective computation algorithms. Firstly, the motivation for surface parameterization and polycube mapping is introduced. Secondly, we briefly review existing surface parameterization techniques, especially for extensively studied parameterization algorithms for topological disk surfaces and parameterizations over regular domains for closed surfaces. Then we propose a polycube parameterization algorithm for closed surfaces with general topology. We develop an efficient optimization framework to minimize the angle and area distortion of the mapping. Its applications on surface meshing, inter-shape morphing and volumetric polycube mapping are also discussed

    IST Austria Thesis

    Get PDF
    Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at the same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented. In architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly nontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick and high precision estimation of glass panel shape and stress while handling the shape multimodality. Fabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information into the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible. Both of these methods include inverse design tools keeping the user in the design loop

    Discrete conformal mappings via circle patterns

    Full text link
    We introduce a novel method for the construction of discrete conformal mappings from surface meshes of arbitrary topology to the plane. Our approach is based on circle patterns, that is, arrangements of circles---one for each face---with prescribed intersection angles. Given these angles, the circle radii follow as the unique minimizer of a convex energy. The method supports very flexible boundary conditions ranging from free boundaries to control of the boundary shape via prescribed curvatures. Closed meshes of genus zero can be parameterized over the sphere. To parameterize higher genus meshes, we introduce cone singularities at designated vertices. The parameter domain is then a piecewise Euclidean surface. Cone singularities can also help to reduce the often very large area distortion of global conformal maps to moderate levels. Our method involves two optimization problems: a quadratic program and the unconstrained minimization of the circle pattern energy. The latter is a convex function of logarithmic radius variables with simple explicit expressions for gradient and Hessian. We demonstrate the versatility and performance of our algorithm with a variety of examples

    Flexible Object Manipulation

    Get PDF
    Flexible objects are a challenge to manipulate. Their motions are hard to predict, and the high number of degrees of freedom makes sensing, control, and planning difficult. Additionally, they have more complex friction and contact issues than rigid bodies, and they may stretch and compress. In this thesis, I explore two major types of flexible materials: cloth and string. For rigid bodies, one of the most basic problems in manipulation is the development of immobilizing grasps. The same problem exists for flexible objects. I have shown that a simple polygonal piece of cloth can be fully immobilized by grasping all convex vertices and no more than one third of the concave vertices. I also explored simple manipulation methods that make use of gravity to reduce the number of fingers necessary for grasping. I have built a system for folding a T-shirt using a 4 DOF arm and a fixed-length iron bar which simulates two fingers. The main goal with string manipulation has been to tie knots without the use of any sensing. I have developed single-piece fixtures capable of tying knots in fishing line, solder, and wire, along with a more complex track-based system for autonomously tying a knot in steel wire. I have also developed a series of different fixtures that use compressed air to tie knots in string. Additionally, I have designed four-piece fixtures, which demonstrate a way to fully enclose a knot during the insertion process, while guaranteeing that extraction will always succeed

    Surface Deformation Potentials on Meshes for Computer Graphics and Visualization

    Get PDF
    Shape deformation models have been used in computer graphics primarily to describe the dynamics of physical deformations like cloth draping, collisions of elastic bodies, fracture, or animation of hair. Less frequent is their application to problems not directly related to a physical process. In this thesis we apply deformations to three problems in computer graphics that do not correspond to physical deformations. To this end, we generalize the physical model by modifying the energy potential. Originally, the energy potential amounts to the physical work needed to deform a body from its rest state into a given configuration and relates material strain to internal restoring forces that act to restore the original shape. For each of the three problems considered, this potential is adapted to reflect an application specific notion of shape. Under the influence of further constraints, our generalized deformation results in shapes that balance preservation of certain shape properties and application specific objectives similar to physical equilibrium states. The applications discussed in this thesis are surface parameterization, interactive shape editing and automatic design of panorama maps. For surface parameterization, we interpret parameterizations over a planar domain as deformations from a flat initial configuration onto a given surface. In this setting, we review existing parameterization methods by analyzing properties of their potential functions and derive potentials accounting for distortion of geometric properties. Interactive shape editing allows an untrained user to modify complex surfaces, be simply grabbing and moving parts of interest. A deformation model interactively extrapolates the transformation from those parts to the rest of the surface. This thesis proposes a differential shape representation for triangle meshes leading to a potential that can be optimized interactively with a simple, tailored algorithm. Although the potential is not physically accurate, it results in intuitive deformation behavior and can be parameterized to account for different material properties. Panorama maps are blends between landscape illustrations and geographic maps that are traditionally painted by an artist to convey geographic surveyknowledge on public places like ski resorts or national parks. While panorama maps are not drawn to scale, the shown landscape remains recognizable and the observer can easily recover details necessary for self location and orientation. At the same time, important features as trails or ski slopes appear not occluded and well visible. This thesis proposes the first automatic panorama generation method. Its basis is again a surface deformation, that establishes the necessary compromise between shape preservation and feature visibility.Potentiale zur Flächendeformation auf Dreiecksnetzen für Anwendungen in der Computergrafik und Visualisierung Deformationsmodelle werden in der Computergrafik bislang hauptsächlich eingesetzt, um die Dynamik physikalischer Deformationsprozesse zu modellieren. Gängige Beispiele sind Bekleidungssimulationen, Kollisionen elastischer Körper oder Animation von Haaren und Frisuren. Deutlich seltener ist ihre Anwendung auf Probleme, die nicht direkt physikalischen Prozessen entsprechen. In der vorliegenden Arbeit werden Deformationsmodelle auf drei Probleme der Computergrafik angewandt, die nicht unmittelbar einem physikalischen Deformationsprozess entsprechen. Zu diesem Zweck wird das physikalische Modell durch eine passende Änderung der potentiellen Energie verallgemeinert. Die potentielle Energie entspricht normalerweise der physikalischen Arbeit, die aufgewendet werden muss, um einen Körper aus dem Ruhezustand in eine bestimmte Konfiguration zu verformen. Darüber hinaus setzt sie die aktuelle Verformung in Beziehung zu internen Spannungskräften, die wirken um die ursprüngliche Form wiederherzustellen. In dieser Arbeit passen wir für jedes der drei betrachteten Problemfelder die potentielle Energie jeweils so an, dass sie eine anwendungsspezifische Definition von Form widerspiegelt. Unter dem Einfluss weiterer Randbedingungen führt die so verallgemeinerte Deformation zu einer Fläche, die eine Balance zwischen der Erhaltung gewisser Formeigenschaften und Zielvorgaben der Anwendung findet. Diese Balance entspricht dem Equilibrium einer physikalischen Deformation. Die drei in dieser Arbeit diskutierten Anwendungen sind Oberflächenparameterisierung, interaktives Bearbeiten von Flächen und das vollautomatische Erzeugen von Panoramakarten im Stile von Heinrich Berann. Zur Oberflächenparameterisierung interpretieren wir Parameterisierungen über einem flachen Parametergebiet als Deformationen, die ein ursprünglich ebenes Flächenstück in eine gegebene Oberfläche verformen. Innerhalb dieses Szenarios vergleichen wir dann existierende Methoden zur planaren Parameterisierung, indem wir die resultierenden potentiellen Energien analysieren, und leiten weitere Potentiale her, die die Störung geometrischer Eigenschaften wie Fläche und Winkel erfassen. Verfahren zur interaktiven Flächenbearbeitung ermöglichen schnelle und intuitive Änderungen an einer komplexen Oberfläche. Dazu wählt der Benutzer Teile der Fläche und bewegt diese durch den Raum. Ein Deformationsmodell extrapoliert interaktiv die Transformation der gewählten Teile auf die restliche Fläche. Diese Arbeit stellt eine neue differentielle Flächenrepräsentation für diskrete Flächen vor, die zu einem einfach und interaktiv zu optimierendem Potential führt. Obwohl das vorgeschlagene Potential nicht physikalisch korrekt ist, sind die resultierenden Deformationen intuitiv. Mittels eines Parameters lassen sich außerdem bestimmte Materialeigenschaften einstellen. Panoramakarten im Stile von Heinrich Berann sind eine Verschmelzung von Landschaftsillustration und geographischer Karte. Traditionell werden sie so von Hand gezeichnet, dass bestimmt Merkmale wie beispielsweise Skipisten oder Wanderwege in einem Gebiet unverdeckt und gut sichtbar bleiben, was große Kunstfertigkeit verlangt. Obwohl diese Art der Darstellung nicht maßstabsgetreu ist, sind Abweichungen auf den ersten Blick meistens nicht zu erkennen. Dadurch kann der Betrachter markante Details schnell wiederfinden und sich so innerhalb des Gebietes orientieren. Diese Arbeit stellt das erste, vollautomatische Verfahren zur Erzeugung von Panoramakarten vor. Grundlage ist wiederum eine verallgemeinerte Oberflächendeformation, die sowohl auf Formerhaltung als auch auf die Sichtbarkeit vorgegebener geographischer Merkmale abzielt

    Automatic tailoring and cloth modelling for animation characters.

    Get PDF
    The construction of realistic characters has become increasingly important to the production of blockbuster films, TV series and computer games. The outfit of character plays an important role in the application of virtual characters. It is one of the key elements reflects the personality of character. Virtual clothing refers to the process that constructs outfits for virtual characters, and currently, it is widely used in mainly two areas, fashion industry and computer animation. In fashion industry, virtual clothing technology is an effective tool which creates, edits and pre-visualises cloth design patterns efficiently. However, using this method requires lots of tailoring expertises. In computer animation, geometric modelling methods are widely used for cloth modelling due to their simplicity and intuitiveness. However, because of the shortage of tailoring knowledge among animation artists, current existing cloth design patterns can not be used directly by animation artists, and the appearance of cloth depends heavily on the skill of artists. Moreover, geometric modelling methods requires lots of manual operations. This tediousness is worsen by modelling same style cloth for different characters with different body shapes and proportions. This thesis addresses this problem and presents a new virtual clothing method which includes automatic character measuring, automatic cloth pattern adjustment, and cloth patterns assembling. There are two main contributions in this research. Firstly, a geodesic curvature flow based geodesic computation scheme is presented for acquiring length measurements from character. Due to the fast growing demand on usage of high resolution character model in animation production, the increasing number of characters need to be handled simultaneously as well as improving the reusability of 3D model in film production, the efficiency of modelling cloth for multiple high resolution character is very important. In order to improve the efficiency of measuring character for cloth fitting, a fast geodesic algorithm that has linear time complexity with a small bounded error is also presented. Secondly, a cloth pattern adjusting genetic algorithm is developed for automatic cloth fitting and retargeting. For the reason that that body shapes and proportions vary largely in character design, fitting and transferring cloth to a different character is a challenging task. This thesis considers the cloth fitting process as an optimization procedure. It optimizes both the shape and size of each cloth pattern automatically, the integrity, design and size of each cloth pattern are evaluated in order to create 3D cloth for any character with different body shapes and proportions while preserve the original cloth design. By automating the cloth modelling process, it empowers the creativity of animation artists and improves their productivity by allowing them to use a large amount of existing cloth design patterns in fashion industry to create various clothes and to transfer same design cloth to characters with different body shapes and proportions with ease
    • …
    corecore