598 research outputs found

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Preserving Trustworthiness and Confidentiality for Online Multimedia

    Get PDF
    Technology advancements in areas of mobile computing, social networks, and cloud computing have rapidly changed the way we communicate and interact. The wide adoption of media-oriented mobile devices such as smartphones and tablets enables people to capture information in various media formats, and offers them a rich platform for media consumption. The proliferation of online services and social networks makes it possible to store personal multimedia collection online and share them with family and friends anytime anywhere. Considering the increasing impact of digital multimedia and the trend of cloud computing, this dissertation explores the problem of how to evaluate trustworthiness and preserve confidentiality of online multimedia data. The dissertation consists of two parts. The first part examines the problem of evaluating trustworthiness of multimedia data distributed online. Given the digital nature of multimedia data, editing and tampering of the multimedia content becomes very easy. Therefore, it is important to analyze and reveal the processing history of a multimedia document in order to evaluate its trustworthiness. We propose a new forensic technique called ``Forensic Hash", which draws synergy between two related research areas of image hashing and non-reference multimedia forensics. A forensic hash is a compact signature capturing important information from the original multimedia document to assist forensic analysis and reveal processing history of a multimedia document under question. Our proposed technique is shown to have the advantage of being compact and offering efficient and accurate analysis to forensic questions that cannot be easily answered by convention forensic techniques. The answers that we obtain from the forensic hash provide valuable information on the trustworthiness of online multimedia data. The second part of this dissertation addresses the confidentiality issue of multimedia data stored with online services. The emerging cloud computing paradigm makes it attractive to store private multimedia data online for easy access and sharing. However, the potential of cloud services cannot be fully reached unless the issue of how to preserve confidentiality of sensitive data stored in the cloud is addressed. In this dissertation, we explore techniques that enable confidentiality-preserving search of encrypted multimedia, which can play a critical role in secure online multimedia services. Techniques from image processing, information retrieval, and cryptography are jointly and strategically applied to allow efficient rank-ordered search over encrypted multimedia database and at the same time preserve data confidentiality against malicious intruders and service providers. We demonstrate high efficiency and accuracy of the proposed techniques and provide a quantitative comparative study with conventional techniques based on heavy-weight cryptography primitives

    CHARAKTERYSTYKA WYBRANYCH TECHNIK UKRYWANIA OBRAZU

    Get PDF
    Considering that different techniques of hiding images are known for a  long time, but have not found wider application, perhaps because of  their shortcomings. In this publication are described some types of techniques secret sharing images that are already in use. The author aims to review these techniques and  summarizes their features.Zważywszy, że różne techniki utajniania obrazów sÄ… znane od dawna, lecz nie znalazÅ‚y szerszego zastosowania, być może ze wzglÄ™du na ich mankamenty, w tej publikacji zostanÄ… opisane niektóre rodzaje technik sekretnego podziaÅ‚u obrazów, które już sÄ…. Autor ma na celu przeglÄ…dniÄ™cie tych technik i ich podsumowanie

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Information embedding and retrieval in 3D printed objects

    Get PDF
    Deep learning and convolutional neural networks have become the main tools of computer vision. These techniques are good at using supervised learning to learn complex representations from data. In particular, under limited settings, the image recognition model now performs better than the human baseline. However, computer vision science aims to build machines that can see. It requires the model to be able to extract more valuable information from images and videos than recognition. Generally, it is much more challenging to apply these deep learning models from recognition to other problems in computer vision. This thesis presents end-to-end deep learning architectures for a new computer vision field: watermark retrieval from 3D printed objects. As it is a new area, there is no state-of-the-art on many challenging benchmarks. Hence, we first define the problems and introduce the traditional approach, Local Binary Pattern method, to set our baseline for further study. Our neural networks seem useful but straightfor- ward, which outperform traditional approaches. What is more, these networks have good generalization. However, because our research field is new, the problems we face are not only various unpredictable parameters but also limited and low-quality training data. To address this, we make two observations: (i) we do not need to learn everything from scratch, we know a lot about the image segmentation area, and (ii) we cannot know everything from data, our models should be aware what key features they should learn. This thesis explores these ideas and even explore more. We show how to use end-to-end deep learning models to learn to retrieve watermark bumps and tackle covariates from a few training images data. Secondly, we introduce ideas from synthetic image data and domain randomization to augment training data and understand various covariates that may affect retrieve real-world 3D watermark bumps. We also show how the illumination in synthetic images data to effect and even improve retrieval accuracy for real-world recognization applications

    Identification through Finger Bone Structure Biometrics

    Get PDF

    Proceedings of the 2021 Symposium on Information Theory and Signal Processing in the Benelux, May 20-21, TU Eindhoven

    Get PDF
    • …
    corecore