30 research outputs found

    Confining isolated atoms and clusters in crystalline porous materials for catalysis

    Full text link
    [EN] Structure-reactivity relationships for nanoparticle-based catalysts have been greatly influenced by the study of catalytic materials with either supported isolated metal atoms or metal clusters comprising a few atoms. The stability of these metal species is a key challenge because they can sinter into large nanoparticles under harsh reaction conditions. However, stability can be achieved by confining the nanoparticles in crystalline porous materials (such as zeolites and metal-organic frameworks). More importantly, the interaction between the metal species and the porous framework may modulate the geometric and electronic structures of the subnanometric metal species, especially for metal clusters. This confinement effect can induce shape-selective catalysis or different chemoselectivity from that of metal atoms supported on open-structure solid carriers. In this Review, we discuss the structural features, synthesis methodologies, characterization techniques and catalytic applications of subnanometric species confined in zeolites and metal-organic frameworks. We make a critical comparison between confined and non-confined isolated atoms and metal clusters, and provide future perspectives for the field.We are grateful for financial support from the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish Government through the Severo Ochoa Program (SEV-2016-0683).Liu, L.; Corma Canós, A. (2021). Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nature Reviews Materials. 6(3):244-263. https://doi.org/10.1038/s41578-020-00250-32442636

    Designing nanoparticles and nanoalloys for gas-phase catalysis with controlled surface reactivity using colloidal synthesis and atomic layer deposition

    Get PDF
    Supported nanoparticles are commonly applied in heterogeneous catalysis. The catalytic performance of these solid catalysts is, for a given support, dependent on the nanoparticle size, shape, and composition, thus necessitating synthesis techniques that allow for preparing these materials with fine control over those properties. Such control can be exploited to deconvolute their effects on the catalyst’s performance, which is the basis for knowledge-driven catalyst design. In this regard, bottom-up synthesis procedures based on colloidal chemistry or atomic layer deposition (ALD) have proven successful in achieving the desired level of control for a variety of fundamental studies. This review aims to give an account of recent progress made in the two aforementioned synthesis techniques for the application of controlled catalytic materials in gas-phase catalysis. For each technique, the focus goes to mono- and bimetallic materials, as well as to recent efforts in enhancing their performance by embedding colloidal templates in porous oxide phases or by the deposition of oxide overlayers via ALD. As a recent extension to the latter, the concept of area-selective ALD for advanced atomic-scale catalyst design is discussed

    Trapping of Metal Atoms and Metal Clusters by Chabazite under Severe Redox Stress

    Full text link
    [EN] The remarkable ability of Al-containing CHA zeolite to trap and stabilize noble single-metal atoms and metal clusters has facilitated the design of sinter-resistant materials for catalytic applications that require severe reaction conditions. At high temperatures in O-2, volatile MOx species appear to be fixated by the zeolite Al centers to prevent Ostwald-ripening sintering mechanisms, whereas small metal clusters (<100 atoms) are stabilized in H-2 without further aggregation as coalescence by Brownian motion is inhibited because of an encapsulation effect. Evidences of the possibility to trap the metal released from a second adjacent surface (e.g., SiO2 and Al2O3), upon metal migration over micrometer distances, are provided. These properties have opened the possibility to prepare several noble-metal atoms and clusters inside small-pore zeolites, including bimetallic formulation, by simple wetness impregnations or solid-to-solid transformations followed by standard calcination procedures, resulting in improved catalytic performances compared to other nonreducible supports in reactions that subject the catalysts to severe redox stress, such as the water-gas-shift reaction.This work has been supported by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267) and MAT2015-71261-R, by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by the Fundacion Ramon Areces through a research contract of the "Life and Materials Science" program. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. This research used beamline 9-BM and 20-ID of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank Isabel Millet, Elisa Garcia, and Paul Stevens for technical assistance, and Aaron Sattler, Randall Meyer, Rob Carr, and Gary Casty for review of the manuscript and interesting scientific discussions. We appreciate the support of ExxonMobil Research and Engineering in this fundamental research area.Moliner Marin, M.; Gabay, JE.; Kliewer, CE.; Serna Merino, PM.; Corma Canós, A. (2018). Trapping of Metal Atoms and Metal Clusters by Chabazite under Severe Redox Stress. ACS Catalysis. 8(10):9520-9528. https://doi.org/10.1021/acscatal.8b01717S9520952881

    Unlocking High-Efficiency Methane Oxidation with Bimetallic Pd–Ce Catalysts under Zeolite Confinement

    Get PDF
    Catalytic complete oxidation is an efficient approach to reducing methane emissions, a significant contributor to global warming. This approach requires active catalysts that are highly resistant to sintering and water vapor. In this work, we demonstrate that Pd nanoparticles confined within silicalite-1 zeolites (Pd@S-1), fabricated using a facile in situ encapsulation strategy, are highly active and stable in catalyzing methane oxidation and are superior to those supported on the S-1 surface due to a confinement effect. The activity of the confined Pd catalysts was further improved by co-confining a suitable amount of Ce within the S-1 zeolite (PdCe0.4@S-1), which is attributed to confinement-reinforced Pd-Ce interactions that promote the formation of oxygen vacancies and highly reactive oxygen species. Furthermore, the introduction of Ce improves the hydrophobicity of the S-1 zeolite and, by forming Pd-Ce mixed oxides, inhibits the transformation of the active PdO phase to inactive Pd(OH)2 species. Overall, the bimetallic PdCe0.4@S-1 catalyst delivers exceptional outstanding activity and durability in complete methane oxidation, even in the presence of water vapor. This study may provide new prospects for the rational design of high-performance and durable Pd catalysts for complete methane oxidation

    Heterogeneous Metal Catalysts: From Single Atoms to Nanoclusters and Nanoparticles

    Full text link
    Tesis por compendioLas especies de metal con diferentes tamaños (átomos individuales, nanocristales y nanopartículas) muestran un comportamiento catalítico diferente para diversas reacciones catalíticas heterogéneas. Se ha demostrado en la bibliografía que muchos factores que incluyen el tamaño de partícula, la forma, la composición química, la interacción metal-soporte, la interacción metal-reactivo / disolvente, pueden tener influencias significativas sobre las propiedades catalíticas de los catalizadores metálicos. Los desarrollos recientes de metodologías de síntesis bien controladas y herramientas de caracterización avanzada permiten correlacionar las relaciones a nivel molecular. En esta tesis, he llevado a cabo estudios sobre catalizadores metálicos desde átomos individuales hasta nanoclusters y nanopartículas. Al desarrollar nuevas metodologías de síntesis, el tamaño de las especies metálicas puede modularse y usarse como catalizadores modelo para estudiar el efecto del tamaño sobre el comportamiento catalítico de los catalizadores metálicos para la oxidación del CO, la hidrogenación selectiva, la oxidación selectiva y la fotocatálisis. Se ha encontrado que, los átomos metálicos dispersados por separado y los grupos subnanométricos de metal pueden aglomerarse en nanoclusters o nanopartículas más grandes en condiciones de reacción. Para mejorar la estabilidad de los catalizadores subnanométricos de metal, he desarrollado una nueva estrategia para la generación de átomos individuales y clusters en zeolitas. Esas especies subnanométricas de metales son estables en tratamientos de oxidación-reducción a 550 oC. Siguiendo esta nueva metodología de síntesis, este nuevo tipo de materiales puede servir como catalizador modelo para estudiar la evolución de especies subnanométricas de metales en condiciones de reacción. La transformación estructural de las especies subnanométricas de Pt ha sido estudiada mediante microscopía electrónica de transmisión in situ. Se ha demostrado que el tamaño de las especies de Pt está fuertemente relacionado con las condiciones de reacción, que proporcionan importantes conocimientos para comprender el comportamiento de los catalizadores de metales subnanométricos en condiciones de reacción. En la otra línea de investigación para catalizadores de metales no nobles, he desarrollado varias estrategias generales para obtener catalizadores de metales no nobles, ya sea soportados sobre óxidos metálicos o protegidos por capas delgadas de carbono. Estos materiales muestran un rendimiento excelente para varias reacciones importantes, como la hidrogenación quimioselectiva de nitroarenos, incluso cuando se comparan con los catalizadores de metales nobles convencionales. En algunos casos, los catalizadores de metales no nobles pueden incluso alcanzar selectividades para productos inviables que no ha sido posible conseguir en catalizadores de metales nobles convencionales, que es causado por la diferente ruta de reacción en catalizadores de metales no nobles. Sin embargo, la espectroscopía fotoelectrónica de rayos X a presión ambiente ha revelado que la irradiación de la luz puede modular la selectividad a los alcoholes y los hidrocarburos C2 +, lo que abre una nueva posibilidad para ajustar el comportamiento catalítico de los catalizadores metálicos. Con base en los trabajos anteriores de diferentes aspectos relacionados con catalizadores metálicos heterogéneos, las perspectivas sobre las direcciones futuras hacia una mejor comprensión del comportamiento catalítico de diferentes entidades metálicas (átomos individuales, nanoagrupamientos y nanopartículas) de una manera unificadora también se han dado en esta tesis.Les espècies metàl·liques de diferents dimensions (àtoms individuals, nanoclusters i nanopartícules) mostren diferents comportaments catalítics per a diverses reaccions catalítiques heterogènies. S'ha demostrat a la literatura que, molts factors que inclouen la mida de la partícula, la forma, la composició química, la interacció amb el suport metàl·lic, la reacció metàl·lica i la interacció amb dissolvents poden tenir influències significatives sobre les propietats catalítiques dels catalitzadors metàl·lics. Els desenvolupaments recents de metodologies de síntesi ben controlades i eines de caracterització avançada permeten relacionar les relacions a nivell molecular. En aquesta tesi, he realitzat estudis sobre catalitzadors metàl·lics d'àtoms únics a nanoclústers i nanopartícules. Mitjançant el desenvolupament de noves metodologies de síntesi, la mida de les espècies metàl·liques es pot modular i utilitzar com a catalitzadors model per estudiar l'efecte de mida sobre el comportament catalític dels catalitzadors metàl·lics per a l'oxidació de CO, hidrogenació selectiva, oxidació selectiva i fotocatàlisi. S'ha trobat que, els àtoms metàl·lics dispersos individualment i els clústers metàl·lics subnanomètrics poden aglomerar-se en nanoclústeres o nanopartícules més grans en condicions de reacció. Per millorar l'estabilitat dels catalitzadors subnanomètrics de metall, he desenvolupat una nova estratègia per a la generació d'àtoms i racimos en zeolites. Aquestes espècies metàl·liques subnanométricas són estables en tractaments de reducció d'oxidació a 550 oC. Després d'aquesta nova metodologia de síntesi, aquest nou tipus de materials poden servir com a model de catalitzador per estudiar l'evolució de les espècies metàl·liques subnanométricas en condicions de reacció. La transformació estructural de l'espècie Pn subnanométrica ha estat estudiada per microscòpia electrònica de transmissió in situ. S'ha demostrat que la mida de les espècies de Pt està fortament relacionada amb les condicions de reacció, que proporcionen idees importants per comprendre el comportament dels catalitzadors de subnanometria en condicions de reacció. En l'altra línia de recerca dels catalitzadors de metalls no nobles, he desenvolupat diverses estratègies generals per obtenir catalizadors de metalls no nobles recolzats en òxids metàl·lics o protegits per capes de carboni primes. Aquests materials presenten un excel·lent rendiment per a diverses reaccions importants, com la hidrogenació quimioelectiva de nitroarenes, fins i tot quan es comparen amb els catalitzadors convencionals de metall noble. En alguns casos, els catalitzadors de metalls no nobles poden fins i tot aconseguir selectivitats a productes no factibles que no s'han pogut assolir en catalitzadors de metall noble convencionals, que es deuen a la via de reacció diferent en catalitzadors de metalls no nobles. No obstant això, s'ha observat una espectroscòpia de fotoelèctria de raigs X amb pressió d'atmosfera que la irradiació lleugera pot modular la selectivitat als alcohols i hidrocarburs C2 +, la qual cosa obre una nova possibilitat per sintonitzar el comportament catalític dels catalitzadors metàl·lics. A partir d'aquests treballs de diferents aspectes relacionats amb els catalitzadors metàl·lics heterogenis, també s'ha donat en aquesta tesi perspectives sobre les futures orientacions cap a una millor comprensió del comportament catalític de diferents entitats metàl·liques (àtoms individuals, nanoclústers i nanopartícules).Metal species with different size (single atoms, nanoclusters and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that, many factors including the particle size, shape, chemical composition, metal-support interaction, metal-reactant/solvent interaction, can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow to correlate the relationships at molecular level. In this thesis, I have carried out studies on metal catalysts from single atoms to nanoclusters and nanoparticles. By developing new synthesis methodologies, the size of metal species can be modulated and used as model catalysts to study the size effect on the catalytic behavior of metal catalysts for CO oxidation, selective hydrogenation, selective oxidation and photocatalysis. It has been found that, singly dispersed metal atoms and subnanometric metal clusters may agglomerate into larger nanoclusters or nanoparticles under reaction conditions. To improve the stability of subnanometric metal catalysts, I have developed a new strategy for the generation of single atoms and clusters in zeolites. Those subnanometric metal species are stable in oxidation-reduction treatments at 550 oC. Following this new synthesis methodology, this new type of materials can serve as model catalyst to study the evolution of subnanometric metal species under reaction conditions. The structural transformation of subnanometric Pt species has been studied by in situ transmission electron microscopy. It has been shown that the size of Pt species is strongly related with the reaction conditions, which provide important insights for understanding the behavior of subnanometric metal catalysts under reaction conditions. In the other research line for non-noble metal catalysts, I have developed several general strategies to obtain non-noble metal catalysts either supported on metal oxides or protected by thin carbon layers. These materials show excellent performance for several important reactions, such as chemoselective hydrogenation of nitroarenes, even when compared with conventional noble metal catalysts. In some cases, non-noble metal catalysts can even achieve selectivities to unfeasible products which has not been possible to achieve on conventional noble metal catalysts, which is caused by the different reaction pathway on non-noble metal catalysts. Nevertheless, it has been revealed by ambient-pressure X-ray photoelectron spectroscopy that light irradiation can modulate the selectivity to alcohols and C2+ hydrocarbons, which opens a new possibility for tuning the catalytic behavior of metal catalysts. Based on the above works from different aspects related with heterogeneous metal catalysts, perspectives on the future directions towards better understanding on the catalytic behavior of different metal entities (single atoms, nanoclusters and nanoparticles) in a unifying manner have also been given in this thesis.Liu, L. (2018). Heterogeneous Metal Catalysts: From Single Atoms to Nanoclusters and Nanoparticles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113169TESISCompendi

    Development of Bi-Functional Zeolite-Based Catalysts for Methane Dehydroaromatization

    Get PDF
    Benzene is one of the most important organic intermediates in the petrochemical industry. Direct methane dehydroaromatization (DHA) under non-oxidative environment has been shown to be a promising pathway to produce benzene since Mo/HZSM-5 was reported as a viable catalyst in 1993. The reaction over this catalyst is generally accepted to proceed via a synergistic mechanism between the metal sites (i.e. MoOxCy) and the Bronsted acid sites (BAS) of HZSM-5. The high benzene selectivity is attributed to the similarity in pore size of ZSM-5 with the dynamic molecular size of benzene. However, diffusion of large benzene molecules inside the zeolite micropores also enhances the chance for undesired further reactions on the BAS, resulting in coking and hence deactivation of the catalyst. While the catalyst can be regenerated via burn-off of the coke in an oxidative environment, this burn-off also results in oxidation of the Mo species, and thus requires a (re-)activation period to convert Mo back into its active oxicarbide form. This catalyst deactivation via coking combined with the lengthy reactivation of the catalyst pose a significant hurdle for economic viability of the process. The objective of this research is to develop a new bi-functional zeolite-based (metal) catalyst that is highly stable while maintaining the high benzene yield from DHA. Towards this goal, we aimed to investigate systematically how the catalytic performance is affected by changes in i) metal sites and ii) porosity of HZSM-5. To study the impact of the metal site in the zeolite, Zn-HZSM-5 and Fe-HZSM-5 catalysts with different metal dispersion was prepared via different synthetic routes and the structural properties of the catalysts were correlated to their catalytic performance. We found that only well dispersed metal species located within the micropores of the zeolite are active for DHA, confirming the proposed reaction mechanism of bi-functional metal/ZSM-5 catalysts in the literature. Furthermore, for Fe-HZSM-5, we found that atomically dispersed iron is thermally most stable and result in no detectable coke formation (on the metal sites). This observation thus yields a valuable guideline for the preparation of DHA catalysts and can potentially help to resolve the primary issues of state-of-the-art Mo/HZSM-5 catalysts: thermal stability and coking resistance. As a second target, the micro- and meso-porosity of HZSM-5 was systematically changed by introducing different types and quantities of “porogens” (metal oxide or carbon black NPs) during zeolite hydrothermal crystallization. We found that coke formation within micropores is suppressed if a controlled degree of mesoporosity is introduced into the catalysts, while too much mesoporosity again enhances coke formation, presumable due to “excess space” and BAS for hydrocarbon formation. Moreover, with increasing mesoporosity the microporosity of the zeolite is decreased, which results in lower benzene selectivity (due to the absence of shape/size selectivity in the mesopores). Overall, one hence obtains optimal performance by balancing minimization of coke formation with high benzene selectivity by introducing a controlled (small) amount of mesoporosity into HZSM-5

    Characterization of metallic species on porous materials by in situ XAS

    Full text link
    El objetivo de esta tesis es estudiar la agrupación y el crecimiento de especies metálicas confinadas o soportadas en materiales porosos mediante espectroscopia de absorción de rayos X in situ. Para lograrlo, las especies de paladio y plata se han introducido en materiales porosos (¿-alúmina, carbón activo y zeolitas) mediante impregnación vía húmeda y métodos de intercambio iónico, respectivamente. Luego, el agrupamiento de estas especies metálicas se ha controlado mediante tratamientos de activación en diferentes atmósferas (inerte, oxidativa y reductiva) y seguido por XAS de manera detallada. El objetivo principal del trabajo actual es demostrar que tanto XANES como EXAFS pueden proporcionar información valiosa y, en cierto punto, innovadora durante el control de especies metálicas (en términos de tipo y tamaño de las especies). Aprovechando los procedimientos de análisis inusuales, como el análisis de los cumulantes, el ajuste de la parte imaginaria de la transformada de Fourier y otros, es posible obtener información refinada sobre los sistemas investigados. En la sección de introducción, se proporciona una compilación de estudios en los que se ha utilizado XAS como técnica importante para caracterizar especies metálicas en materiales porosos. Conscientes de que las personas pueden usar dicha introducción como base para estudios más complejos en el futuro, la discusión se ha dirigido tentativamente hacia este objetivo. El capítulo 4 se centra en el estudio de la influencia de los precursores de paladio y la naturaleza del soporte en las nanopartículas resultantes. El proceso de activación completo, es decir, la transformación precursor --> nanopartícula, ha sido seguido por XAS in situ. El análisis estuvo compuesto por el punto de partida (material impregnado), calcinación en flujo de O2 y reducción posterior con H2. La consecuencia del uso de diferentes precursores metálicos y soportes se ha discutido en términos del número de coordinación promedio obtenido a partir del análisis de datos de EXAFS, que fue respaldado por técnicas de caracterización de laboratorio. El capítulo 5 está dedicado al estudio de la agrupación de plata durante y después de los tratamientos de activación utilizando zeolitas de poro pequeño intercambiadas con plata como precursores y nanocontenedores. Se ha estudiado la influencia de la estructura y la composición química de los materiales basados en plata sobre las especies metálicas formadas en diferentes condiciones de agrupamiento y redispersión del metal (calcinación usando atmósferas distintas, reducción en H2, redispersión en O2) utilizando métodos de caracterización in situ o ex situ. Después, se discuten las consecuencias catalíticas de las zeolitas que contienen Ag en la reacción de SCO-NH3. En esta sección, la combinación de XAS in situ con varias técnicas de laboratorio ha demostrado ser fundamental para un completo entendimiento del trabajo. Finalmente, una lista de proyectos desarrollados en paralelo a esta tesis se proporciona al final de este documento.The aim of this thesis is to study the clustering and growth of metallic species either confined or supported in porous materials by in situ X-ray absorption spectroscopy. To accomplish this task, palladium and silver species were introduced into porous materials (¿-alumina, activated carbon and zeolites) by wetness impregnation and ion-exchange methods, respectively. Then, the clustering of these metallic species was controlled by activation treatments in different atmospheres (inert, oxidative and reductive) and followed by XAS in a comprehensive way. The principal goal of current work is to demonstrate that both XANES and EXAFS can provide valuable and, at certain point, innovative information during tuning of metallic species (in terms of type and size). Taking advantage of unusual analysis procedures, such as cumulant approach, fitting of imaginary part of Fourier transform and others, it is possible to obtain refined information about the investigated systems. In the introduction section, a compilation of studies in which XAS was used as important technique to characterize metallic species in porous materials is provided. Conscious that people can use such introduction as a basis for more complex studies in the future, the discussion has been tentatively directed toward this goal. The chapter 4 is focused on the study of the influence of palladium precursors and the nature of support on the resultant nanoparticles. The whole activation process, i.e. the transformation precursor --> nanoparticle, was followed in situ by XAS. The analysis pathway was composed by the starting point (as-impregnated), calcination in O2 flow and posterior reduction with H2. The consequence of using distinct metal precursors and supports were discussed in terms of average coordination number obtained from EXAFS data analysis, which was co-supported by laboratory characterization techniques. The chapter 5 is dedicated to the study of silver clustering during and after activation treatments using Ag-containing small-pore zeolites as precursors and nanocontainers. The influence of framework structure and chemical composition of Ag-based materials on formed Ag species at different clustering and metal redispersion conditions (calcination using distinct atmospheres, reduction in H2, redispersion in O2) were studied using either in situ or ex situ characterization methods. After, the catalytic consequences of tuned Ag-containing zeolites in SCO-NH3 are discussed. In this section, the combination of in situ XAS with several laboratory techniques proved to be pivotal to have a full picture of the investigated system. Finally, a list of projects developed in parallel to this thesis is provided at the end of this document.L'objectiu d'aquesta tesi és estudiar l'agrupació i el creixement d'espècies metàl·liques confinades o suportades en materials porosos mitjançant espectroscòpia d'absorció de raigs X in situ. Per a això, les espècies de pal·ladi i plata s'han introduït en materials porosos (¿-alúmina, carbó activat i zeolites) per mitjà de la impregnació via humida i mètodes d'intercanvi iònic, respectivament. Una vegada preparats els materials, l'agrupament de les espècies metàl·liques s'ha controlat fent ús de tractaments d'activació en diferents atmosferes (inert, oxidant i reductora) s'ha estudiat exhaustivament per XAS. L'objectiu principal del treball és demostrar que tant el XANES com l'EXAFS proporcionen informació rellevant i, en certa manera, innovadora per al control d'espècies metàl·liques (en termes de tipus i grandària d'aquestes espècies). Fent ús de procediments de tractament de dades no molt habituals com l'anàlisi de cumulants, l'ajust de la part imaginària de la transformada de Fourier i altres, és possible obtenir informació detallada sobre els sistemes estudiats. En l'apartat de la introducció, es proporciona una recopilació d'estudis en els quals s'ha utilitzat XAS com a tècnica principal per a caracteritzar les anomenades espècies metàl·liques en materials porosos. Aquesta introducció ha estat redactada per a que puga servir com a punt de partida per a futurs estudis que requereixen la utilització de XAS per a la caracterització de les espècies metàl·liques presents en els catalitzadors. El capítol 4 es centra en l'estudi de la influència dels precursors de pal·ladi i la naturalesa del suport front a les nanopartícules resultants. El procés d'activació, és a dir, la transformació precursor --> nanopartícula, ha sigut estudiat per XAS in situ. L'anàlisi per XAS va comprendre els següents passos: punt de partida (material impregnat), calcinació en flux d'O2 i reducció posterior amb H2. La utilització de diferents precursors i suports metàl·lics ha permès dur a terme una discussió, referent al nombre de coordinació mitjà obtingut a partir de l'anàlisi de dades de la zona EXAFS, que ha estat recolzat per altres tècniques de caracterització. El capítol 5 s'ha dedicat a l'estudi de l'agrupació de plata intercanviada en els catalitzadors durant i després dels tractaments d'activació. S'han utilitzat zeolites de porus xicotet, com la CHA i RHO, intercanviades amb plata. L'estudi de la influència de l'estructura zeolítica i la composició química dels materials enfront dels diferents tractaments d'activació (calcinació utilitzant diferents atmosferes, reducció en presència d'H2, re-dispersió en atmosfera d'O2) es va realitzar fent ús de mètodes de caracterització in situ o ex situ. A continuació, es discuteix la influència d'aquestes espècies metàl·liques formades, utilitzant els diferents mètodes d'activació, per a la reacció d'SCO-NH3. En aquest sentit, s'ha demostrat que la combinació de XAS in situ amb diverses tècniques habituals de laboratori és fonamental per al desenvolupament d'aquest treball. Finalment, es presenta una llista de projectes, en els quals també s'ha treballat paral·lelament, on s'ha utilitzat XAS com a tècnica de caracterització.Wittee Lopes, C. (2018). Characterization of metallic species on porous materials by in situ XAS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10795

    Structure, Stability, Vibrational, Thermodynamic, And Catalytic Properties Of Metal Nanostructures: Size, Shape, Support, And Adsorbate Effects

    Get PDF
    Recent advances in nanoscience and technology have provided the scientific community with new exciting opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. A variety of challenges related to nanoparticle (NP) synthesis and materials characterization have been tackled , allowing us to make more homogenous, well defined, size- and shape-selected NPs, and to probe deeper and more comprehensively into their distinct properties. In this dissertation, a variety of phenomena relevant to nanosized materials are investigated, including the thermal stability of NPs and coarsening phenomena in different environments, the experimental determination of NP shapes, gaining insight into NP-support interactions, epitaxial relationships, and unusual thermodynamic and electronic properties of NPs, including the effect of adsorbates on the electron density of states of small clusters, and the chemical, and structural evolution of NPs under reaction conditions. In chapter 2, a general description of different characterization tools that are used in this dissertation is provided. In chapter 3, the details of two different methods used for NP synthesis, namely inverse micelle encapsulation and physical vapor deposition (PVD) are described. Chapter 4 describes the thermal stability and coarsening behavior of Pt NPs supported on TiO2(110) and γ-Al2O3 as a function of the synthesis method, support pretreatment, and annealing environment. For the Pt/TiO2(110) system, micellesynthesized NPs showed remarkable stability against coarsening for annealing temperatures up to 1060°C in vacuum, in contrast to PVD-grown NPs. When comparing v different annealing environments (H2, O2, H2O), Pt NPs on γ-Al2O3 annealed in O2 were found to be the least affected by coarsening, followed by those heated in H2O vapor. The largest NP growth was observed for the sample annealed in H2. The role of the PtOx species formed under oxidizing conditions will be discussed. In chapter 5, the shape of Pt and Au NPs and their epitaxial relationship with the TiO2(110) support was extracted from scanning tunneling microscopy (STM) measurements. Three main categories of NP shapes were identified, and through shape modeling, the contribution of facets with different orientations was obtained as a function of the number of atoms in each NP. It was also shown that the micellesynthesized Pt and Au NPs have an epitaxial relationship with the support, which is evident from the fact that they always have one symmetry axis parallel to TiO2(110) atomic rows in [001] directions. Chapter 6 describes how the presence of NPs on TiO2(110) surface affects its reconstruction upon high temperature annealing in vacuum. In contrast to NP-free TiO2(110) substrates, long and narrow TiO2 stripes are observed for Pt NP-decorated surfaces. This phenomenon is explained based on the stabilization of TiO2, induced by Pt NPs, which hinders the desorption of oxygen atoms in TiO2 to vacuum. In chapter 7, a systematic investigation of the thermodynamic properties of γ- Al2O3-supported Pt NPs and their evolution with decreasing NP size is presented. A combination of in situ extended x-ray absorption fine structure spectroscopy (EXAFS), ex situ transmission electron microscopy (TEM) measurements, and NP shape modeling is used to obtain the NPs shape, thermal expansion coefficient, and Debye vi temperature. The unusual thermodynamic behavior of these NPs such as their negative thermal expansion and enhanced Debye temperature are discussed in detail. Chapter 8 presents an investigation of the electronic properties of size-controlled γ-Al2O3-supported Pt NPs and their evolution with decreasing NP size and adsorbate (H2) coverage. The hydrogen coverage of Pt NPs at different temperatures was estimated based on XANES data and was found to be influenced by the NP size, and shape. In addition, correlations between the shift in the center of the unoccupied d-band density of states (theory) and energy shifts of the XANES spectra (experiment) upon hydrogen chemisorption as well as upon modification of the NP structure were established. Chapter 9 is dedicated to an operando study, describing the evolution of the structure and oxidation state of ZrO2-supported Pd nanocatalysts during the in-situ selective reduction of NO in H2 via EXAFS and XANES measurements

    Pt-CeO2-based composites in environmental catalysis: A review

    Get PDF
    The Pt–CeO2-based composites have brought about a vivid research interest due to their use in advanced combustion engines, proton-exchange membrane fuel cells, etc. Complementing features of Pt and ceria particles cause numerous applications of such composites in environmental catalysis science and technology. The present review summarizes recent advances in Pt–CeO2 chemistry and discusses the following key aspects: (1) catalyst preparation, including Pt and Ce-MOF-derived precursors, and treatment methods, (2) Pt-related factors: size, including single-atom formulations, and state, (3) CeO2-related factors: morphology, surface defects, and derived features, (4) modification of catalyst composition, including the formation of bimetallic particles, (5) nature and structure of active sites, (6) features of metal–support interaction. The range of covered environmental catalytic applications includes oxidation processes (CO oxidation, VOCs abatement, soot oxidation, combustion of vehicle exhausts, etc.), reduction of nitroaromatics, CO2 utilization (dry reforming of alkanes, CO2 reduction, etc.), and photocatalytic reactions
    corecore