672 research outputs found

    The ESCAPE project : Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche a l'Operationnel a Meso-Echelle) and ALADIN (Aire Limitee Adaptation Dynamique Developpement International); and COSMO-EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU-GPU arrangements

    Generic access to symbolic computing services

    Get PDF
    Symbolic computation is one of the computational domains that requires large computational resources. Computer Algebra Systems (CAS), the main tools used for symbolic computations, are mainly designed to be used as software tools installed on standalone machines that do not provide the required resources for solving large symbolic computation problems. In order to support symbolic computations an infrastructure built upon massively distributed computational environments must be developed. Building an infrastructure for symbolic computations requires a thorough analysis of the most important requirements raised by the symbolic computation world and must be built based on the most suitable architectural styles and technologies. The architecture that we propose is composed of several main components: the Computer Algebra System (CAS) Server that exposes the functionality implemented by one or more supporting CASs through generic interfaces of Grid Services; the Architecture for Grid Symbolic Services Orchestration (AGSSO) Server that allows seamless composition of CAS Server capabilities; and client side libraries to assist the users in describing workflows for symbolic computations directly within the CAS environment. We have also designed and developed a framework for automatic data management of mathematical content that relies on OpenMath encoding. To support the validation and fine tuning of the system we have developed a simulation platform that mimics the environment on which the architecture is deployed

    Recent Developments and Future Directions in Lisp-Stat

    Get PDF
    1 online resource (PDF, 16 pages

    The ESCAPE project: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    Abstract. In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche à l'Opérationnel à Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International); and COSMO–EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU–GPU arrangements

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    MeasureIt-ARCH: A Tool for Facilitating Architectural Design in the Open Source Software Blender

    Get PDF
    This thesis discusses the design and synthesis of MeasureIt-ARCH, a GNU GPL licensed software add-on developed by the author in order to add functionality to the Open Source 3D modeling software Blender that facilitates the creation of architectural drawings. MeasureIt-ARCH adds to Blender simple tools to dimension and annotate 3D models, as well as basic support for the definition and drawing of line work. These tools for the creation of dimensions, annotations and line work are designed to be used in tandem with Blender's existing modelling and rendering tool set. While the drawings that MeasureIt-ARCH produces are fundamentally conventional, as are the majority of the techniques that MeasureIt-ARCH employs to create them, MeasureIt-ARCH does provide two simple and relatively novel methods in its drawing systems. MeasureIt-ARCH provides a new method for the placement of dimension elements in 3D space that draws on the dimension's three dimensional context and surrounding geometry order to determine a placement that optimizes legibility. This dimension placement method does not depend on a 2D work plane, a convention that is common in industry standard Computer Aided Design software. MeasureIt-ARCH also implements a new approach for drawing silhouette lines that operates by transforming the silhouetted models geometry in 4D 'Clip Space'. The hope of this work is that MeasureIt-ARCH might be a small step towards creating an Open Source design pipeline for Architects. A step towards creating architectural drawings that can be shared, read, and modified by anyone, within a platform that is itself free to be changed and improved. The creation of MeasureIt-ARCH is motivated by two goals. First, the work aims to create a basic functioning Open Source platform for the creation of architectural drawings within Blender that is publicly and freely available for use. Second, MeasureIt-ARCH's development served as an opportunity to engage in an interdisciplinary act of craft, providing the author an opportunity to explore the act of digital tool making and gain a basic competency in this intersection between Architecture and Computer Science. To achieve these goals, MeasureIt-ARCH's development draws on references from the history of line drawing and dimensioning within Architecture and Computer Science. On the Architectural side, we make use of the history of architectural drawing and dimensioning conventions as described by Mario Carpo, Alberto Pérez Gómez and others, as well as more contemporary frameworks for the classification of architectural software, such as Mark Bew and Mervyn Richard's BIM Levels framework, in order to help determine the scope of MeasureIt-ARCH's feature set. When crafting MeasureIt-ARCH, precedent works from the field of Computer Science that implement methods for producing line drawings from 3D models helped inform the author’s approach to line drawing. In particular this work draws on the overview of line drawing methods produced by Bénard Pierre and Aaron Hertzmann, Arthur Appel's method for line drawing using 'Quantitative Invisibility', the techniques employed in the Freestyle line drawing system created by Grabli et al. as well as other to help inform MeasureIt-ARCH's simple drawing tools. Beyond discussing MeasureIt-ARCH's development and its motivations, this thesis also provides three small speculative discussions about the implications that an Open Source design tool might have on the architectural profession. We investigate MeasureIt-ARCH's use for small scale architectural projects in a practical setting, using it's tool set to produce conceptual design and renovation drawings for cottages at the Lodge at Pine Cove. We provide a demonstration of how MeasureIt-ARCH and Blender can integrate with external systems and other Blender add-ons to produce a proof of concept, dynamic data visualization of the Noosphere installation at the Futurium center in Berlin by the Living Architecture Systems Group. Finally, we discuss the tool's potential to facilitate greater engagement with the Open Source Architecture (OSArc) movement by illustrating a case study of the work done by Alastair Parvin and Clayton Prest on the WikiHouse project, and by highlighting the challenges that face OSArc projects as they try to produce Open Source Architecture without an Open Source design software

    Refactoring the UrQMD model for many-core architectures

    Get PDF
    Ultrarelativistic Quantum Molecular Dynamics is a physics model to describe the transport, collision, scattering, and decay of nuclear particles. The UrQMD framework has been in use for nearly 20 years since its first development. In this period computing aspects, the design of code, and the efficiency of computation have been minor points of interest. Nowadays an additional issue arises due to the fact that the run time of the framework does not diminish any more with new hardware generations. The current development in computing hardware is mainly focused on parallelism. Especially in scientific applications a high order of parallelisation can be achieved due to the superposition principle. In this thesis it is shown how modern design criteria and algorithm redesign are applied to physics frameworks. The redesign with a special emphasise on many-core architectures allows for significant improvements of the execution speed. The most time consuming part of UrQMD is a newly introduced relativistic hydrodynamic phase. The algorithm used to simulate the hydrodynamic evolution is the SHASTA. As the sequential form of SHASTA is successfully applied in various simulation frameworks for heavy ion collisions its possible parallelisation is analysed. Two different implementations of SHASTA are presented. The first one is an improved sequential implementation. By applying a more concise design and evading unnecessary memory copies, the execution time could be reduced to the half of the FORTRAN version’s execution time. The usage of memory could be reduced by 80% compared to the memory needed in the original version. The second implementation concentrates fully on the usage of many-core architectures and deviates significantly from the classical implementation. Contrary to the sequential implementation, it follows the recalculate instead of memory look-up paradigm. By this means the execution speed could be accelerated up to a factor of 460 on GPUs. Additionally a stability analysis of the UrQMD model is presented. Applying metapro- gramming UrQMD is compiled and executed in a massively parallel setup. The resulting simulation data of all parallel UrQMD instances were hereafter gathered and analysed. Hence UrQMD could be proven of high stability to the uncertainty of experimental data. As a further application of modern programming paradigms a prototypical implementa- tion of the worldline formalism is presented. This formalism allows for a direct calculation of Feynman integrals and constitutes therefore an interesting enhancement for the UrQMD model. Its massively parallel implementation on GPUs is examined
    corecore