3,395 research outputs found

    A Multi-User Interactive Coral Reef Optimization Algorithm for Considering Expert Knowledge in the Unequal Area Facility Layout Problem

    Get PDF
    The problem of Unequal Area Facility Layout Planning (UA-FLP) has been addressed by a large number of approaches considering a set of quantitative criteria. Moreover, more recently, the personal qualitative preferences of an expert designer or decision-maker (DM) have been taken into account too. This article deals with capturing more than a single DM’s personal preferences to obtain a common and collaborative design including the whole set of preferences from all the DMs to obtain more complex, complete, and realistic solutions. To the best of our knowledge, this is the first time that the preferences of more than one expert designer have been considered in the UA-FLP. The new strategy has been implemented on a Coral Reef Optimization (CRO) algorithm using two techniques to acquire the DMs’ evaluations. The first one demands the simultaneous presence of all the DMs, while the second one does not. Both techniques have been tested over three well-known problem instances taken from the literature and the results show that it is possible to obtain sufficient designs capturing all the DMs’ personal preferences and maintaining low values of the quantitative fitness function

    A novel multi-objective Interactive Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) has been widely analyzed in the literature using several heuristics and meta-heuristics to optimize some qualitative criteria, taking into account different restrictions and constraints. Nevertheless, the subjective opinion of the designer (Decision Maker, DM) has never been considered along with the quantitative criteria and restrictions. This work proposes a novel approach for the UA-FLP based on an Interactive Coral Reefs Optimization (ICRO) algorithm, which combines the simultaneous consideration of both quantitative and qualitative (DM opinion) features. The algorithm implementation is explained in detail, including the way of jointly considering quantitative and qualitative aspects in the fitness function of the problem. The experimental part of the paper illustrates the effect of including qualitative aspects in UA-FLP problems, considering three different hard UA-FLP instances. Empirical results show that the proposed approach is able to incorporate the DM preferences in the obtained layouts, without affecting much to the quantitative part of the solutions

    Using eye-tracking into decision makers evaluation in evolutionary interactive UA-FLP algorithms

    Get PDF
    Unequal area facility layout problem is an important issue in the design of industrial plants, as well as other fields such as hospitals or schools, among others. While participating in an interactive designing process, the human user is required to evaluate a high number of proposed solutions, which produces them fatigue both mental and physical. In this paper, the use of eye-tracking to estimate user’s evaluations from gaze behavior is investigated. The results show that, after a process of training and data taking, it is possible to obtain a good enough estimation of the user’s evaluations which is independent of the problem and of the users as well. These promising results advice to use eye-tracking as a substitute for the mouse during users’ evaluations

    Facility layout design using a multi-objective interactive genetic algorithm to support the DM

    Get PDF
    The unequal area facility layout problem (UA-FLP) has been addressed by many methods. Most of them only take aspects that can be quantified into account. This contribution presents a novel approach, which considers both quantitative aspects and subjective features. To this end, a multi-objective interactive genetic algorithm is proposed with the aim of allowing interaction between the algorithm and the human expert designer, normally called the decision maker (DM) in the field of UA-FLP. The contribution of the DM's knowledge into the approach guides the complex search process, adjusting it to the DM's preferences. The entire population associated to facility layout designs is evaluated by quantitative criteria in combination with an assessment prepared by the DM, who gives a subjective evaluation for a set of representative individuals of the population in each iteration. In order to choose these individuals, a soft computing clustering method is used. Two interesting real-world data sets are analysed to empirically probe the robustness of these models. The first UA-FLP case study describes an ovine slaughterhouse plant and the second, a design for recycling carton plant. Relevant results are obtained, and interesting conclusions are drawn from the application of this novel intelligent framework

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    A decision support system for integrated semi-centralised urban wastewater treatment systems

    Get PDF
    The importance of adequate water supply and sanitation infrastructure as cornerstones for the development of civilizations is undeniable. Although a strategy based on centralised infrastructure has proven to be successful in the past, in some circumstances such conventional systems are inappropriate for future needs. A Semi-centralised Urban Wastewater Treatment System (SUWWTS) may be considered a viable sustainable urban water management solution to promote water security. A SUWWTS merges regulations of traditional centralised systems with the concepts of close-loop and resource recovery of decentralised systems. However, research on the design and feasibility of implementing semi-centralised systems is in its infancy. This Thesis is a first attempt to articulate the complexity, to systematize and to automatize the design of a SUWWTS. Here we show a novel method, referred to as framework, for the development of SUWWTS with allowance for the socio-economic and geographic context of any urban area. To demonstrate the proposed framework a Decision Support System (DSS) was developed; its output is a recommended design comprised of several wastewater treatment plants, their respective technology, and their associated sewerage and reclaimed water distribution networks. The results demonstrate the capabilities and the usefulness of the DSS; it applies the design engineers’ subjective preferences, such as regional technological inclinations and implementation strategies. The results from a feasibility study on the city of Rio de Janeiro validated and demonstrated how the DSS can be used to assist decision-makers. This Thesis discusses the framework, the DSS and the demonstration case. Overall, it will hopefully help both other researchers and practitioners by contributing to the discussion on how to promote urban water security, to decrease urban areas’ dependency on ecosystem services whilst delivering better social welfare

    Multiplicity of solutions in model‑based multi objective optimization of wastewater treatment plants

    Get PDF
    Wastewater treatment process design involves the optimization of multiple conflicting objectives. The detection of different equivalent solutions in terms of objective values is crucial for designers in order to efficiently switch to the new optimal operation policies if changes in the process conditions or new constraints occur. In this work, the dynamic multi-objective optimization of a municipal wastewater treatment plant model is carried out. The aim is to simultaneously optimize an economic cost term and an effluent quality index. The selected process variables for the optimization are (1) an aeration factor in the aerated tank previous to the clarifier, and (2) an internal recycle flow rate. Their time profiles are approximated using the control vector parameterization technique. To solve the multi-objective problem and find the Pareto front, the NSGA-II algorithm has been used. The simulation of different realistic scenarios which impose operational constraints (e.g., maintenance operations) reveals that, indeed, multiple solutions exist at least in some areas of the Pareto front. It is observed that different control profiles can produce nearly identical results in terms of Pareto solutions. The a priori knowledge of these equivalent solutions for different scenarios provides the decision makers with alternative choices to be adapted to their organizations policies when events altering decision variables bounds or adding new constraints to the process model occur.The authors are grateful to Ministry of Science, Innovation and Universities (MICINN) and FEDER for their fnancial support (Projects DPI2016-77538-R and RTI2018-099139-B-C21

    Design and Management of Manufacturing Systems

    Get PDF
    Although the design and management of manufacturing systems have been explored in the literature for many years now, they still remain topical problems in the current scientific research. The changing market trends, globalization, the constant pressure to reduce production costs, and technical and technological progress make it necessary to search for new manufacturing methods and ways of organizing them, and to modify manufacturing system design paradigms. This book presents current research in different areas connected with the design and management of manufacturing systems and covers such subject areas as: methods supporting the design of manufacturing systems, methods of improving maintenance processes in companies, the design and improvement of manufacturing processes, the control of production processes in modern manufacturing systems production methods and techniques used in modern manufacturing systems and environmental aspects of production and their impact on the design and management of manufacturing systems. The wide range of research findings reported in this book confirms that the design of manufacturing systems is a complex problem and that the achievement of goals set for modern manufacturing systems requires interdisciplinary knowledge and the simultaneous design of the product, process and system, as well as the knowledge of modern manufacturing and organizational methods and techniques

    Invited review: Models for the optimization of regional wastewater treatment systems

    Get PDF
    European Journal of Operational Research, nÂş 73 (1994)The problem of the optimization of regional wastewater systems may be generally formulated as follows: to define the transport and treatment system, in a region or water basin, which assure compliance with given pollution control criteria, with minimum cost. In addition, one may try to satisfy other objectives, such as minimum environmental impact, better effluent reuse or adequate phasing. From the optimization point of view, the two main problems that render the solution difficult are the dimensionality and the concavity of cost functions. The matter has been dealt with by many authors, who have produced varied techniques to try to solve this problem. This paper begins with a brief review of the work of those authors who have produced models specifically designed to study the problem. Then, solution strategies are discussed concerning three major items: definition of the objective function and constraints, optimization method and practical aplicability of the models. The paper concludes with the discussion of topics for future research
    • …
    corecore