32 research outputs found

    Countable Short Recursively Saturated Models of Arithmetic

    Full text link
    Short recursively saturated models of arithmetic are exactly the elementary initial segments of recursively saturated models of arithmetic. Since any countable recursively saturated model of arithmetic has continuum many elementary initial segments which are already recursively saturated, we turn our attention to the (countably many) initial segments which are not recursively saturated. We first look at properties of countable short recursively saturated models of arithmetic and show that although these models cannot be cofinally resplendent (an expandability property slightly weaker than resplendency), these models have non-definable expansions which are still short recursively saturated

    Expansions, omitting types, and standard systems

    Full text link
    Recursive saturation and resplendence are two important notions in models of arithmetic. Kaye, Kossak, and Kotlarski introduced the notion of arithmetic saturation and argued that recursive saturation might not be as rigid as first assumed. In this thesis we give further examples of variations of recursive saturation, all of which are connected with expandability properties similar to resplendence. However, the expandability properties are stronger than resplendence and implies, in one way or another, that the expansion not only satisfies a theory, but also omits a type. We conjecture that a special version of this expandability is in fact equivalent to arithmetic saturation. We prove that another of these properties is equivalent to \beta-saturation. We also introduce a variant on recursive saturation which makes sense in the context of a standard predicate, and which is equivalent to a certain amount of ordinary saturation. The theory of all models which omit a certain type p(x) is also investigated. We define a proof system, which proves a sentence if and only if it is true in all models omitting the type p(x). The complexity of such proof systems are discussed and some explicit examples of theories and types with high complexity, in a special sense, are given. We end the thesis by a small comment on Scott's problem. We prove that, under the assumption of Martin's axiom, every Scott set of cardinality <2^{\aleph_0} closed under arithmetic comprehension which has the countable chain condition is the standard system of some model of PA. However, we do not know if there exists any such uncountable Scott sets.Comment: Doctoral thesi

    Realizability and recursive mathematics

    Get PDF
    Section 1: Philosophy, logic and constructivityPhilosophy, formal logic and the theory of computation all bear on problems in the foundations of constructive mathematics. There are few places where these, often competing, disciplines converge more neatly than in the theory of realizability structures. Uealizability applies recursion-theoretic concepts to give interpretations of constructivism along lines suggested originally by Heyting and Kleene. The research reported in the dissertation revives the original insights of Kleene—by which realizability structures are viewed as models rather than proof-theoretic interpretations—to solve a major problem of classification and to draw mathematical consequences from its solution.Section 2: Intuitionism and recursion: the problem of classificationThe internal structure of constructivism presents an interesting problem. Mathematically, it is a problem of classification; for philosophy, it is one of conceptual organization. Within the past seventy years, constructive mathematics has grown into a jungle of fullydeveloped "constructivities," approaches to the mathematics of the calculable which range from strict finitism through hyperarithmetic model theory. The problem we address is taxonomic: to sort through the jungle, set standards for classification and determine those features which run through everything that is properly "constructive."There are two notable approaches to constructivity; these must appear prominently in any proposed classification. The most famous is Brouwer's intuitioniam. Intuitionism relies on a complete constructivization of the basic mathematical objects and logical operations. The other is classical recursive mathematics, as represented by the work of Dekker, Myhill, and Nerode. Classical constructivists use standard logic in a mathematical universe restricted to coded objects and recursive operations.The theorems of the dissertation give a precise answer to the classification problem for intuitionism and classical constructivism. Between these realms arc connected semantically through a model of intuitionistic set theory. The intuitionistic set theory IZF encompasses all of the intuitionistic mathematics that does not involve choice sequences. (This includes all the work of the Bishop school.) IZF has as a model a recursion-theoretic structure, V(A7), based on Kleene realizability. Since realizability takes set variables to range over "effective" objects, large parts of classical constructivism appear over the model as inter¬ preted subsystems of intuitionistic set theory. For example, the entire first-order classical theory of recursive cardinals and ordinals comes out as an intuitionistic theory of cardinals and ordinals under realizability. In brief, we prove that a satisfactory partial solution to the classification problem exists; theories in classical recursive constructivism are identical, under a natural interpretation, to intuitionistic theories. The interpretation is especially satisfactory because it is not a Godel-style translation; the interpretation can be developed so that it leaves the classical logical forms unchanged.Section 3: Mathematical applications of the translation:The solution to the classification problem is a bridge capable of carrying two-way mathematical traffic. In one direction, an identification of classical constructivism with intuitionism yields a certain elimination of recursion theory from the standard mathematical theory of effective structures, leaving pure set theory and a bit of model theory. Not only are the theorems of classical effective mathematics faithfully represented in intuitionistic set theory, but also the arguments that provide proofs of those theorems. Via realizability, one can find set-theoretic proofs of many effective results, and the set-theoretic proofs are often more straightforward than their recursion-theoretic counterparts. The new proofs are also more transparent, because they involve, rather than recursion theory plus set theory, at most the set-theoretic "axioms" of effective mathematics.Working the other way, many of the negative ("cannot be obtained recursively") results of classical constructivism carry over immediately into strong independence results from intuitionism. The theorems of Kalantari and Retzlaff on effective topology, for instance, turn into independence proofs concerning the structure of the usual topology on the intuitionistic reals.The realizability methods that shed so much light over recursive set theory can be applied to "recursive theories" generally. We devote a chapter to verifying that the realizability techniques can be used to good effect in the semantical foundations of computer science. The classical theory of effectively given computational domains a la Scott can be subsumed into the Kleene realizability universe as a species of countable noneffective domains. In this way, the theory of effective domains becomes a chapter (under interpre¬ tation) in an intuitionistic study of denotational semantics. We then show how the "extra information" captured in the logical signs under realizability can be used to give proofs of classical theorems about effective domains.Section 4: Solutions to metamathematical problems:The realizability model for set theory is very tractible; in many ways, it resembles a Boolean-valued universe. The tractibility is apparent in the solutions it offers to a number of open problems in the metamathematics of constructivity. First, there is the perennial problem of finding and delimiting in the wide constructive universe those features that correspond to structures familiar from classical mathematics. In the realizability model, it is easy to locate the collection of classical ordinals and to show that they form, intuitionistically, a set rather than a proper class. Also, one interprets an argument of Dekker and Myhill to prove that the classical powerset of the natural numbers contains at least continuum-many distinct cardinals.Second, a major tenet of Bishop's program for constructivity has been that constructive mathematics is "numerical:" all the properties of constructive objects, including the real numbers, can be represented as properties of the natural numbers. The realizability model shows that Bishop's numericalization of mathematics can, in principle, be accomplished. Every set over the model with decidable equality and every metric space is enumerated by a collection of natural numbers

    Lepton Flavour Non-Universality - From Effective Field Theory to Extended Gauge Models

    Get PDF

    Topics in Programming Languages, a Philosophical Analysis through the case of Prolog

    Get PDF
    [EN]Programming languages seldom find proper anchorage in philosophy of logic, language and science. is more, philosophy of language seems to be restricted to natural languages and linguistics, and even philosophy of logic is rarely framed into programming languages topics. The logic programming paradigm and Prolog are, thus, the most adequate paradigm and programming language to work on this subject, combining natural language processing and linguistics, logic programming and constriction methodology on both algorithms and procedures, on an overall philosophizing declarative status. Not only this, but the dimension of the Fifth Generation Computer system related to strong Al wherein Prolog took a major role. and its historical frame in the very crucial dialectic between procedural and declarative paradigms, structuralist and empiricist biases, serves, in exemplar form, to treat straight ahead philosophy of logic, language and science in the contemporaneous age as well. In recounting Prolog's philosophical, mechanical and algorithmic harbingers, the opportunity is open to various routes. We herein shall exemplify some: - the mechanical-computational background explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Konrad Zuse, until reaching to the ACE (Alan Turing) and EDVAC (von Neumann), offering the backbone in computer architecture, and the work of Turing, Church, Gödel, Kleene, von Neumann, Shannon, and others on computability, in parallel lines, throughly studied in detail, permit us to interpret ahead the evolving realm of programming languages. The proper line from lambda-calculus, to the Algol-family, the declarative and procedural split with the C language and Prolog, and the ensuing branching and programming languages explosion and further delimitation, are thereupon inspected as to relate them with the proper syntax, semantics and philosophical élan of logic programming and Prolog

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life

    Hollow Men: Colonial Forms, Irish Subjects, and the Great Famine in Modernist Literature, 1890-1930

    Get PDF
    This dissertation traces the impact and influence of Ireland\u27s Great Famine (145-1852) on the formal developments of Irish and British modernism. The Famine is arguably the founding event for colonial Ireland\u27s entry into modernity. This forceful event and forced legacy allows us to rethink modernism\u27s developmental trajectory; rather than a movement deriving out of metropolitan experimentation, I argue for modernism\u27s colonial roots. Colonial events like the Famine or what I term colonial atrocities are marked by mass death and cultural degradation, and further facilitated by the technological, ideological, and exploitative practices deriving from modernity. Representative practices that arise in response to atrocity---like stream of consciousness, fragmentation, large and elusive allusions---precede and develop ahead of the later consolidation of these practices as modernism .;At its most ambitious, this dissertation\u27s philosophical, postcolonial, and formal emphases allow us to rethink the ontological notions of modernity and postcolonial theory while also recasting the relations between colonialism and modernism as generative rather than antagonistic. For writers composing in the aftermath of colonial atrocities, a viable anti-colonial and resistant narrative can be fashioned once the atrocity as pitfall of despair and victimization is seen in another light. My conception of atrocity becomes a mode of analysis that fits Alain Badiou\u27s philosophy of the event. The Famine, then, is the event that generates truth and revolutionary subjects capable of shifting atrocity\u27s legacies from victimization and dehumanization to an egalitarian force opposed to colonial hegemony. On a textual level, I see these revisionary Famine legacies played out in the formal practices of Bram Stoker\u27s Dracula, Rudyard Kipling\u27s Kim, and James Joyce\u27s A Portrait of the Artist as a Young Man and Ulysses.

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life
    corecore