731 research outputs found

    The Complexity of Orbits of Computably Enumerable Sets

    Full text link
    The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, \E, such that the question of membership in this orbit is Σ11\Sigma^1_1-complete. This result and proof have a number of nice corollaries: the Scott rank of \E is \wock +1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of \E; for all finite α≥9\alpha \geq 9, there is a properly Δα0\Delta^0_\alpha orbit (from the proof). A few small corrections made in this versionComment: To appear in the Bulletion of Symbolic Logi

    Diophantine sets of polynomials over algebraic extensions of the rationals

    Get PDF
    Let L be a recursive algebraic extension of Q. Assume that, given alpha is an element of L, we can compute the roots in L of its minimal polynomial over Q and we can determine which roots are Aut(L)-conjugate to alpha. We prove that there exists a pair of polynomials that characterizes the Aut(L)-conjugates of alpha, and that these polynomials can be effectively computed. Assume furthermore that L can be embedded in R, or in a finite extension of Q(p) (with p an odd prime). Then we show that subsets of L[X](k) that are recursively enumerable for every recursive presentation of L[X], are diophantine over L[X]

    Computational Processes and Incompleteness

    Full text link
    We introduce a formal definition of Wolfram's notion of computational process based on cellular automata, a physics-like model of computation. There is a natural classification of these processes into decidable, intermediate and complete. It is shown that in the context of standard finite injury priority arguments one cannot establish the existence of an intermediate computational process

    Max Dehn, Axel Thue, and the Undecidable

    Full text link
    This is a short essay on the roles of Max Dehn and Axel Thue in the formulation of the word problem for (semi)groups, and the story of the proofs showing that the word problem is undecidable.Comment: Definition of undecidability and unsolvability improve

    Sets of integers in different number systems and the Chomsky hierarchy

    Get PDF
    The classes of the Chomsky hierarchy are characterized in respect of converting between canonical number systems. We show that the relations of the bases of the original and converted number systems fall into four distinct categories, and we examine the four Chomsky classes in each of the four cases. We also prove that all of the Chomsky classes are closed under constant addition and multiplication. The classes RE and CS are closed under every examined operation. The regular languages axe closed under addition, but not under multiplication
    • …
    corecore