1,714 research outputs found

    Autotuning multigrid with PetaBricks

    Get PDF
    Algorithmic choice is essential in any problem domain to realizing optimal computational performance. Multigrid is a prime example: not only is it possible to make choices at the highest grid resolution, but a program can switch techniques as the problem is recursively attacked on coarser grid levels to take advantage of algorithms with different scaling behaviors. Additionally, users with different convergence criteria must experiment with parameters to yield a tuned algorithm that meets their accuracy requirements. Even after a tuned algorithm has been found, users often have to start all over when migrating from one machine to another. We present an algorithm and autotuning methodology that address these issues in a near-optimal and efficient manner. The freedom of independently tuning both the algorithm and the number of iterations at each recursion level results in an exponential search space of tuned algorithms that have different accuracies and performances. To search this space efficiently, our autotuner utilizes a novel dynamic programming method to build efficient tuned algorithms from the bottom up. The results are customized multigrid algorithms that invest targeted computational power to yield the accuracy required by the user. The techniques we describe allow the user to automatically generate tuned multigrid cycles of different shapes targeted to the user's specific combination of problem, hardware, and accuracy requirements. These cycle shapes dictate the order in which grid coarsening and grid refinement are interleaved with both iterative methods, such as Jacobi or Successive Over-Relaxation, as well as direct methods, which tend to have superior performance for small problem sizes. The need to make choices between all of these methods brings the issue of variable accuracy to the forefront. Not only must the autotuning framework compare different possible multigrid cycle shapes against each other, but it also needs the ability to compare tuned cycles against both direct and (non-multigrid) iterative methods. We address this problem by using an accuracy metric for measuring the effectiveness of tuned cycle shapes and making comparisons over all algorithmic types based on this common yardstick. In our results, we find that the flexibility to trade performance versus accuracy at all levels of recursive computation enables us to achieve excellent performance on a variety of platforms compared to algorithmically static implementations of multigrid. Our implementation uses PetaBricks, an implicitly parallel programming language where algorithmic choices are exposed in the language. The PetaBricks compiler uses these choices to analyze, autotune, and verify the PetaBricks program. These language features, most notably the autotuner, were key in enabling our implementation to be clear, correct, and fast.National Science Foundation (U.S.) (Award CCF-0832997)GigaScale Systems Research Cente

    Quantum and Classical Multilevel Algorithms for (Hyper)Graphs

    Get PDF
    Combinatorial optimization problems on (hyper)graphs are ubiquitous in science and industry. Because many of these problems are NP-hard, development of sophisticated heuristics is of utmost importance for practical problems. In recent years, the emergence of Noisy Intermediate-Scale Quantum (NISQ) computers has opened up the opportunity to dramaticaly speedup combinatorial optimization. However, the adoption of NISQ devices is impeded by their severe limitations, both in terms of the number of qubits, as well as in their quality. NISQ devices are widely expected to have no more than hundreds to thousands of qubits with very limited error-correction, imposing a strict limit on the size and the structure of the problems that can be tackled directly. A natural solution to this issue is hybrid quantum-classical algorithms that combine a NISQ device with a classical machine with the goal of capturing “the best of both worlds”. Being motivated by lack of high quality optimization solvers for hypergraph partitioning, in this thesis, we begin by discussing classical multilevel approaches for this problem. We present a novel relaxation-based vertex similarity measure termed algebraic distance for hypergraphs and the coarsening schemes based on it. Extending the multilevel method to include quantum optimization routines, we present Quantum Local Search (QLS) – a hybrid iterative improvement approach that is inspired by the classical local search approaches. Next, we introduce the Multilevel Quantum Local Search (ML-QLS) that incorporates the quantum-enhanced iterative improvement scheme introduced in QLS within the multilevel framework, as well as several techniques to further understand and improve the effectiveness of Quantum Approximate Optimization Algorithm used throughout our work

    On the van der Waerden numbers w(2;3,t)

    Get PDF
    We present results and conjectures on the van der Waerden numbers w(2;3,t) and on the new palindromic van der Waerden numbers pdw(2;3,t). We have computed the new number w(2;3,19) = 349, and we provide lower bounds for 20 <= t <= 39, where for t <= 30 we conjecture these lower bounds to be exact. The lower bounds for 24 <= t <= 30 refute the conjecture that w(2;3,t) <= t^2, and we present an improved conjecture. We also investigate regularities in the good partitions (certificates) to better understand the lower bounds. Motivated by such reglarities, we introduce *palindromic van der Waerden numbers* pdw(k; t_0,...,t_{k-1}), defined as ordinary van der Waerden numbers w(k; t_0,...,t_{k-1}), however only allowing palindromic solutions (good partitions), defined as reading the same from both ends. Different from the situation for ordinary van der Waerden numbers, these "numbers" need actually to be pairs of numbers. We compute pdw(2;3,t) for 3 <= t <= 27, and we provide lower bounds, which we conjecture to be exact, for t <= 35. All computations are based on SAT solving, and we discuss the various relations between SAT solving and Ramsey theory. Especially we introduce a novel (open-source) SAT solver, the tawSolver, which performs best on the SAT instances studied here, and which is actually the original DLL-solver, but with an efficient implementation and a modern heuristic typical for look-ahead solvers (applying the theory developed in the SAT handbook article of the second author).Comment: Second version 25 pages, updates of numerical data, improved formulations, and extended discussions on SAT. Third version 42 pages, with SAT solver data (especially for new SAT solver) and improved representation. Fourth version 47 pages, with updates and added explanation

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Experiments with parallel algorithms for combinatorial problems

    Get PDF
    In the last decade many models for parallel computation have been proposed and many parallel algorithms have been developed. However, few of these models have been realized and most of these algorithms are supposed to run on idealized, unrealistic parallel machines. The parallel machines constructed so far all use a simple model of parallel computation. Therefore, not every existing parallel machine is equally well suited for each type of algorithm. The adaptation of a certain algorithm to a specific parallel archi- tecture may severely increase the complexity of the algorithm or severely obscure its essence. Little is known about the performance of some standard combinatorial algorithms on existing parallel machines. In this paper we present computational results concerning the solution of knapsack, shortest paths and change-making problems by branch and bound, dynamic programming, and divide and conquer algorithms on the ICL-DAP (an SIMD computer), the Manchester dataflow machine and the CDC-CYBER-205 (a pipeline computer)
    • …
    corecore