509 research outputs found

    From Nonlinear Identification to Linear Parameter Varying Models: Benchmark Examples

    Full text link
    Linear parameter-varying (LPV) models form a powerful model class to analyze and control a (nonlinear) system of interest. Identifying a LPV model of a nonlinear system can be challenging due to the difficulty of selecting the scheduling variable(s) a priori, which is quite challenging in case a first principles based understanding of the system is unavailable. This paper presents a systematic LPV embedding approach starting from nonlinear fractional representation models. A nonlinear system is identified first using a nonlinear block-oriented linear fractional representation (LFR) model. This nonlinear LFR model class is embedded into the LPV model class by factorization of the static nonlinear block present in the model. As a result of the factorization a LPV-LFR or a LPV state-space model with an affine dependency results. This approach facilitates the selection of the scheduling variable from a data-driven perspective. Furthermore the estimation is not affected by measurement noise on the scheduling variables, which is often left untreated by LPV model identification methods. The proposed approach is illustrated on two well-established nonlinear modeling benchmark examples

    Combined state and parameter estimation for Hammerstein systems with time-delay using the Kalman filtering

    Get PDF
    This paper discusses the state and parameter estimation problem for a class of Hammerstein state space systems with time-delay. Both the process noise and the measurement noise are considered in the system. Based on the observable canonical state space form and the key term separation, a pseudo-linear regressive identification model is obtained. For the unknown states in the information vector, the Kalman filter is used to search for the optimal state estimates. A Kalman-filter based least squares iterative and a recursive least squares algorithms are proposed. Extending the information vector to include the latest information terms which are missed for the time-delay, the Kalman-filter based recursive extended least squares algorithm is derived to obtain the estimates of the unknown time-delay, parameters and states. The numerical simulation results are given to illustrate the effectiveness of the proposed algorithms

    Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

    Get PDF
    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm

    Identification of Stochastic Wiener Systems using Indirect Inference

    Full text link
    We study identification of stochastic Wiener dynamic systems using so-called indirect inference. The main idea is to first fit an auxiliary model to the observed data and then in a second step, often by simulation, fit a more structured model to the estimated auxiliary model. This two-step procedure can be used when the direct maximum-likelihood estimate is difficult or intractable to compute. One such example is the identification of stochastic Wiener systems, i.e.,~linear dynamic systems with process noise where the output is measured using a non-linear sensor with additive measurement noise. It is in principle possible to evaluate the log-likelihood cost function using numerical integration, but the corresponding optimization problem can be quite intricate. This motivates studying consistent, but sub-optimal, identification methods for stochastic Wiener systems. We will consider indirect inference using the best linear approximation as an auxiliary model. We show that the key to obtain a reliable estimate is to use uncertainty weighting when fitting the stochastic Wiener model to the auxiliary model estimate. The main technical contribution of this paper is the corresponding asymptotic variance analysis. A numerical evaluation is presented based on a first-order finite impulse response system with a cubic non-linearity, for which certain illustrative analytic properties are derived.Comment: The 17th IFAC Symposium on System Identification, SYSID 2015, Beijing, China, October 19-21, 201

    Fuzzy Hammerstein Model of Nonlinear Plant

    Get PDF
    This paper presents the synthesis and analysis of the enhanced predictive fuzzy Hammerstein model of the water tank system. Fuzzy Hammerstein model was compared with three other fuzzy models: the first was synthesized using Mamdani type rule base, the second – Takagi-Sugeno type rule base and the third – composed of Mamdani and Takagi-Sugeno rule bases. The synthesized model is invertible so it can be used in the model based control. The fuzzy Hammerstein model was synthesized to eliminate disadvantages of the other fuzzy models. The advantage of the fuzzy Hammerstein model was experimentally proved and presented in this paper

    Gradient-based iterative parameter estimation for bilinear-in-parameter systems using the model decomposition technique

    Get PDF
    The parameter estimation issues of a block-oriented non-linear system that is bilinear in the parameters are studied, i.e. the bilinear-in-parameter system. Using the model decomposition technique, the bilinear-in-parameter model is decomposed into two fictitious submodels: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear dynamic one and the noise model. Then a gradient-based iterative algorithm is proposed to estimate all the unknown parameters by formulating and minimising two criterion functions. The stochastic gradient algorithms are provided for comparison. The simulation results indicate that the proposed iterative algorithm can give higher parameter estimation accuracy than the stochastic gradient algorithms

    Stochastic mean-square performance analysis of an adaptive Hammerstein filter

    Get PDF
    Journal ArticleAbstract-This paper presents an almost sure mean-square performance analysis of an adaptive Hammerstein filter for the case when the measurement noise in the desired response signal is a martingale difference sequence. The system model consists of a series connection of a memoryless nonlinearity followed by a recursive linear filter. A bound for the long-term time average of the squared a posteriori estimation error of the adaptive filter is derived using a basic set of assumptions on the operating environment. This bound consists of two terms, one of which is proportional to a parameter that depends on the step size sequences of the algorithm and the other that is inversely proportional to the maximum value of the increment process associated with the coefficients of the underlying system. One consequence of this result is that the long-term time average of the squared a posteriori estimation error can be made arbitrarily close to its minimum possible value when the underlying system is time-invariant
    corecore