135 research outputs found

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Centralized filtering and smoothing algorithms from outputs with random parameter matrices transmitted through uncertain communication channels

    Get PDF
    The least-squares linear centralized estimation problem is addressed for discrete-time signals from measured outputs whose disturbances are modeled by random parameter matrices and correlated noises. These measurements, coming from different sensors, are sent to a processing center to obtain the estimators and, due to random transmission failures, some of the data packet processed for the estimation may either contain only noise (uncertain observations), be delayed (sensor delays) or even be definitely lost (packet dropouts). Different sequences of Bernoulli random variables with known probabilities are employed to describe the multiple random transmission uncertainties of the different sensors. Using the last observation that successfully arrived when a packet is lost, the optimal linear centralized fusion estimators, including filter, multi-step predictors and fixed-point smoothers, are obtained via an innovation approach; this approach is a general and useful tool to find easily implementable recursive algorithms for the optimal linear estimators under the least-squares optimality criterion. The proposed algorithms are obtained without requiring the evolution model of the signal process, but using only the first and second-order moments of the processes involved in the measurement model.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigaciónand Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)

    An exact minimum variance filter for a class of discrete time systems with random parameter perturbations

    Get PDF
    An exact, closed-form minimum variance filter is designed for a class of discrete time uncertain systems which allows for both multiplicative and additive noise sources. The multiplicative noise model includes a popular class of models (Cox-Ingersoll-Ross type models) in econometrics. The parameters of the system under consideration which describe the state transition are assumed to be subject to stochastic uncertainties. The problem addressed is the design of a filter that minimizes the trace of the estimation error variance. Sensitivity of the new filter to the size of parameter uncertainty, in terms of the variance of parameter perturbations, is also considered. We refer to the new filter as the 'perturbed Kalman filter' (PKF) since it reduces to the traditional (or unperturbed) Kalman filter as the size of stochastic perturbation approaches zero. We also consider a related approximate filtering heuristic for univariate time series and we refer to filter based on this heuristic as approximate perturbed Kalman filter (APKF). We test the performance of our new filters on three simulated numerical examples and compare the results with unperturbed Kalman filter that ignores the uncertainty in the transition equation. Through numerical examples, PKF and APKF are shown to outperform the traditional (or unperturbed) Kalman filter in terms of the size of the estimation error when stochastic uncertainties are present, even when the size of stochastic uncertainty is inaccurately identified

    A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises

    Get PDF
    This paper is concerned with the distributed filtering problem for a class of discrete-time stochastic systems over a sensor network with a given topology. The system presents the following main features: (i) random parameter matrices in both the state and observation equations are considered; and (ii) the process and measurement noises are one-step autocorrelated and two-step cross-correlated. The state estimation is performed in two stages. At the first stage, through an innovation approach, intermediate distributed least-squares linear filtering estimators are obtained at each sensor node by processing available output measurements not only from the sensor itself but also from its neighboring sensors according to the network topology. At the second stage, noting that at each sampling time not only the measurement but also an intermediate estimator is available at each sensor, attention is focused on the design of distributed filtering estimators as the least-squares matrix-weighted linear combination of the intermediate estimators within its neighborhood. The accuracy of both intermediate and distributed estimators, which is measured by the error covariance matrices, is examined by a numerical simulation example where a four-sensor network is considered. The example illustrates the applicability of the proposed results to a linear networked system with state-dependent multiplicative noise and different network-induced stochastic uncertainties in the measurements; more specifically, sensor gain degradation, missing measurements and multiplicative observation noises are considered as particular cases of the proposed observation model.This research is supported by Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2014- 52291-P, MTM2017-84199-P)

    Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing

    Get PDF
    This paper investigates the distributed fusion estimation problem for networked systems whose mul- tisensor measured outputs involve uncertainties modelled by random parameter matrices. Each sensor transmits its measured outputs to a local processor over different communication channels and random failures –one-step delays and packet dropouts–are assumed to occur during the transmission. White sequences of Bernoulli random variables with different probabilities are introduced to describe the ob- servations that are used to update the estimators at each sampling time. Due to the transmission failures, each local processor may receive either one or two data packets, or even nothing and, when the current measurement does not arrive on time, its predictor is used in the design of the estimators to compensate the lack of updated information. By using an innovation approach, local least-squares linear estimators (filter and fixed-point smoother) are obtained at the individual local processors, without requiring the signal evolution model. From these local estimators, distributed fusion filtering and smoothing estimators weighted by matrices are obtained in a unified way, by applying the least-squares criterion. A simula- tion study is presented to examine the performance of the estimators and the influence that both sensor uncertainties and transmission failures have on the estimation accuracy.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)

    Optimal linear filter design for systems with correlation in the measurement matrices and noises: recursive algorithm and applications

    Get PDF
    This paper addresses the optimal least-squares linear estimation problem for a class of discrete-time stochastic systems with random parameter matrices and correlated additive noises. The system presents the following main features: (1) one-step correlated and cross-correlated random parameter matrices in the observation equation are assumed; (2) the process and measurement noises are one-step autocorrelated and two-step cross-correlated. Using an innovation approach and these correlation assumptions, a recursive algorithm with a simple computational procedure is derived for the optimal linear filter. As a significant application of the proposed results, the optimal recursive filtering problem in multi-sensor systems with missing measurements and random delays can be addressed. Numerical simulation examples are used to demonstrate the feasibility of the proposed filtering algorithm, which is also compared with other filters that have been proposed.Ministerio de Ciencia e Innovación [FPU programme] [grant number MTM2011-24718

    Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays

    Get PDF
    This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2013 IEEE.This paper is concerned with the gain-constrained recursive filtering problem for a class of time-varying nonlinear stochastic systems with probabilistic sensor delays and correlated noises. The stochastic nonlinearities are described by statistical means that cover the multiplicative stochastic disturbances as a special case. The phenomenon of probabilistic sensor delays is modeled by introducing a diagonal matrix composed of Bernoulli distributed random variables taking values of 1 or 0, which means that the sensors may experience randomly occurring delays with individual delay characteristics. The process noise is finite-step autocorrelated. The purpose of the addressed gain-constrained filtering problem is to design a filter such that, for all probabilistic sensor delays, stochastic nonlinearities, gain constraint as well as correlated noises, the cost function concerning the filtering error is minimized at each sampling instant, where the filter gain satisfies a certain equality constraint. A new recursive filtering algorithm is developed that ensures both the local optimality and the unbiasedness of the designed filter at each sampling instant which achieving the pre-specified filter gain constraint. A simulation example is provided to illustrate the effectiveness of the proposed filter design approach.This work was supported in part by the National Natural Science Foundation of China by Grants 61273156, 61028008, 60825303, 61104125, and 11271103, National 973 Project by Grant 2009CB320600, the Fok Ying Tung Education Fund by Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China by Grant 2007B4, the State Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. by Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Centralized, distributed and sequential fusion estimation from uncertain outputs with correlation between sensor noises and signal

    Get PDF
    This paper focuses on the least-squares linear fusion filter design for discrete-time stochastic signals from multisensor measurements perturbed not only by additive noise, but also by different uncertainties that can be comprehensively modeled by random parameter matrices. The additive noises from the different sensors are assumed to be cross-correlated at the same time step and correlated with the signal at the same and subsequent time steps. A covariancebased approach is used to derive easily implementable recursive filtering algorithms under the centralized, distributed and sequential fusion architectures. Although centralized and sequential estimators both have the same accuracy, the evaluation of their computational complexity reveals that the sequential filter can provide a significant reduction of computational cost over the centralized one. The accuracy of the proposed fusion filters is explored by a simulation example, where observation matrices with random parameters are used to describe different kinds of sensor uncertainties.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER [grant number MTM2017- 84199-P]

    Networked fusion estimation with multiple uncertainties and time-correlated channel noise

    Get PDF
    This paper is concerned with the fusion filtering and fixed-point smoothing problems for a class of networked systems with multiple random uncertainties in both the sensor outputs and the transmission connections. To deal with this kind of systems, random parameter matrices are considered in the mathematical models of both the sensor measurements and the data available after transmission. The additive noise in the transmission channel from each sensor is assumed to be sequentially time-correlated. By using the time-differencing approach, the available measurements are transformed into an equivalent set of observations that do not depend on the timecorrelated noise. The innovation approach is then applied to obtain recursive distributed and centralized fusion estimation algorithms for the filtering and fixed-point smoothing estimators of the signal based on the transformed measurements, which are equal to the estimators based on the original ones. The derivation of the algorithms does not require the knowledge of the signal evolution model, but only the mean and covariance functions of the processes involved (covariance information). A simulation example illustrates the utility and effectiveness of the proposed fusion estimation algorithms, as well as the applicability of the current model to deal with different network-induced random phenomena.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)
    corecore