2,730 research outputs found

    A space-time neural network

    Get PDF
    Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given

    Interpolated-DFT-Based Fast and Accurate Amplitude and Phase Estimation for the Control of Power

    Full text link
    The quality of energy produced in renewable energy systems has to be at the high level specified by respective standards and directives. The estimation accuracy of grid signal parameters is one of the most important factors affecting this quality. This paper presents a method for a very fast and accurate amplitude and phase grid signal estimation using the Fast Fourier Transform procedure and maximum decay sidelobes windows. The most important features of the method are the elimination of the impact associated with the conjugate's component on the results and the straightforward implementation. Moreover, the measurement time is very short - even far less than one period of the grid signal. The influence of harmonics on the results is reduced by using a bandpass prefilter. Even using a 40 dB FIR prefilter for the grid signal with THD = 38%, SNR = 53 dB and a 20-30% slow decay exponential drift the maximum error of the amplitude estimation is approximately 1% and approximately 0.085 rad of the phase estimation in a real-time DSP system for 512 samples. The errors are smaller by several orders of magnitude for more accurate prefilters.Comment: in Metrology and Measurement Systems, 201

    Improved IIR Low-Pass Smoothers and Differentiators with Tunable Delay

    Full text link
    Regression analysis using orthogonal polynomials in the time domain is used to derive closed-form expressions for causal and non-causal filters with an infinite impulse response (IIR) and a maximally-flat magnitude and delay response. The phase response of the resulting low-order smoothers and differentiators, with low-pass characteristics, may be tuned to yield the desired delay in the pass band or for zero gain at the Nyquist frequency. The filter response is improved when the shape of the exponential weighting function is modified and discrete associated Laguerre polynomials are used in the analysis. As an illustrative example, the derivative filters are used to generate an optical-flow field and to detect moving ground targets, in real video data collected from an airborne platform with an electro-optic sensor.Comment: To appear in Proc. International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, 23rd-25th Nov. 201

    Discrete-time variance tracking with application to speech processing

    Get PDF
    Two new discrete-time algorithms are presented for tracking variance and reciprocal variance. The closed loop nature of the solutions to these problems makes this approach highly accurate and can be used recursively in real time. Since the Least-Mean Squares (LMS) method of parameter estimation requires an estimate of variance to compute the step size, this technique is well suited to applications such as speech processing and adaptive filtering

    Adaptive control and noise suppression by a variable-gain gradient algorithm

    Get PDF
    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature
    • …
    corecore