213 research outputs found

    From Nonlinear Identification to Linear Parameter Varying Models: Benchmark Examples

    Full text link
    Linear parameter-varying (LPV) models form a powerful model class to analyze and control a (nonlinear) system of interest. Identifying a LPV model of a nonlinear system can be challenging due to the difficulty of selecting the scheduling variable(s) a priori, which is quite challenging in case a first principles based understanding of the system is unavailable. This paper presents a systematic LPV embedding approach starting from nonlinear fractional representation models. A nonlinear system is identified first using a nonlinear block-oriented linear fractional representation (LFR) model. This nonlinear LFR model class is embedded into the LPV model class by factorization of the static nonlinear block present in the model. As a result of the factorization a LPV-LFR or a LPV state-space model with an affine dependency results. This approach facilitates the selection of the scheduling variable from a data-driven perspective. Furthermore the estimation is not affected by measurement noise on the scheduling variables, which is often left untreated by LPV model identification methods. The proposed approach is illustrated on two well-established nonlinear modeling benchmark examples

    Identification scheme for fractional Hammerstein Models with the delayed Haar Wavelet

    Get PDF
    The parameter identification of a nonlinear Hammerstein-type process is likely to be complex and challenging due to the existence of significant nonlinearity at the input side. In this paper, a new parameter identification strategy for a block-oriented Hammerstein process is proposed using the Haar wavelet operational matrix (HWOM). To determine all the parameters in the Hammerstein model, a special input excitation is utilized to separate the identification problem of the linear subsystem from the complete nonlinear process. During the first test period, a simple step response data is utilized to estimate the linear subsystem dynamics. Then, the overall system response to sinusoidal input is used to estimate nonlinearity in the process. A single-pole fractional order transfer function with time delay is used to model the linear subsystem. In order to reduce the mathematical complexity resulting from the fractional derivatives of signals, a HWOM based algebraic approach is developed. The proposed method is proven to be simple and robust in the presence of measurement noises. The numerical study illustrates the efficiency of the proposed modeling technique through four different nonlinear processes and results are compared with existing methods

    Metaheuristics algorithms to identify nonlinear Hammerstein model: A decade survey

    Get PDF
    Metaheuristics have been acknowledged as an effective solution for many difficult issues related to optimization. The metaheuristics, especially swarm’s intelligence and evolutionary computing algorithms, have gained popularity within a short time over the past two decades. Various metaheuristics algorithms are being introduced on an annual basis and applications that are more new are gradually being discovered. This paper presents a survey for the years 2011-2021 on multiple metaheuristics algorithms, particularly swarm and evolutionary algorithms, to identify a nonlinear block-oriented model called the Hammerstein model, mainly because such model has garnered much interest amidst researchers to identify nonlinear systems. Besides introducing a complete survey on the various population-based algorithms to identify the Hammerstein model, this paper also investigated some empirically verified actual process plants results. As such, this article serves as a guideline on the fundamentals of identifying nonlinear block-oriented models for new practitioners, apart from presenting a comprehensive summary of cutting-edge trends within the context of this topic area

    Online system identification development based on recursive weighted least square neural networks of nonlinear hammerstein and wiener models.

    Get PDF
    The realistic dynamics mathematical model of a system is very important for analyzing a system. The mathematical system model can be derived by applying physical, thermodynamic, and chemistry laws. But this method has some drawbacks, among which is difficult for complex systems, sometimes is untraceable for nonlinear behavior that almost all systems have in the real world, and requires much knowledge. Another method is system identification which is also called experimental modeling. System identification can be made offline, but this method has a disadvantage because the features of a dynamic system may change over time. The parameters may vary as environmental conditions change. It requires big data and consumes a long time. This research introduces a developed method for online system identification based on the Hammerstein and Wiener nonlinear block-oriented structure with the artificial neural networks (NN) advantages and recursive weighted least squares algorithm for optimizing neural network learning in real-time. The proposed method aimed to obtain a maximally informative mathematical model that can describe the actual dynamic behaviors of a system, using the DC motor as a case study. The goodness of fit validation based on the normalized root-mean-square error (NRMSE) and normalized mean square error, and Theil’s inequality coefficient are used to evaluate the performance of models. Based on experimental results, for best Wiener parallel NN model and series-parallel NN model are 93.7% and 89.48%, respectively. Best Hammerstein parallel NN polynomial based model and series-parallel NN polynomial model are 88.75% and 93.9% respectively, for best Hammerstein parallel NN sigmoid based model and series-parallel NN sigmoid based model 78.26% and 95.95% respectively, and for best Hammerstein parallel NN hyperbolic tangent based model and series-parallel NN hyperbolic tangent based model 70.7% and 96.4% respectively. The best model of the developed method outperformed the conventional NARX and NARMAX methods best model by 3.26% in terms of NRMSE goodness of fit

    Identification of continuous-time model of hammerstein system using modified multi-verse optimizer

    Get PDF
    his thesis implements a novel nature-inspired metaheuristic optimization algorithm, namely the modified Multi-Verse Optimizer (mMVO) algorithm, to identify the continuous-time model of Hammerstein system. Multi-Verse Optimizer (MVO) is one of the most recent robust nature-inspired metaheuristic algorithm. It has been successfully implemented and used in various areas such as machine learning applications, engineering applications, network applications, parameter control, and other similar applications to solve optimization problems. However, such metaheuristics had some limitations, such as local optima problem, low searching capability and imbalance between exploration and exploitation. By considering these limitations, two modifications were made upon the conventional MVO in our proposed mMVO algorithm. Our first modification was an average design parameter updating mechanism to solve the local optima issue of the traditional MVO. The essential feature of the average design parameter updating mechanism is that it helps any trapped design parameter jump out from the local optima region and continue a new search track. The second modification is the hybridization of MVO with the Sine Cosine Algorithm (SCA) to improve the low searching capability of the conventional MVO. Hybridization aims to combine MVO and SCA algorithms advantages and minimize the disadvantages, such as low searching capability and imbalance between exploration and exploitation. In particular, the search capacity of the MVO algorithm has been improved using the sine and cosine functions of the Sine Cosine Algorithm (SCA) that will be able to balance the processes of exploration and exploitation. The mMVO based method is then used for identifying the parameters of linear and nonlinear subsystems in the Hammerstein model using the given input and output data. Note that the structure of the linear and nonlinear subsystems is assumed to be known. Moreover, a continuous-time linear subsystem is considered in this study, while there are a few methods that utilize such models. Two numerical examples and one real-world application, such as the Twin Rotor System (TRS) are used to illustrate the efficiency of the mMVO-based method. Various nonlinear subsystems such as quadratic and hyperbolic functions (sine and tangent) are used in those experiments. Numerical and experimental results are analyzed to focus on the convergence curve of the fitness function, the parameter variation index, frequency and time domain response and the Wilcoxon rank test. For the numerical identifications, three different levels of white noise variances were taken. The statistical analysis value (mean) was taken from the parameter deviation index to see how much our proposed algorithm has improved. For Example 1, the improvements are 29%, 33.15% and 36.68%, and for the noise variances, 0.01, 0.25, and 1.0 improvements can be found. For Example 2, the improvements are 39.36%, 39.61% and 66.18%, and for noise variances, the improvements are by 0.01, 0.25 and 1.0, respectively. Finally, for the real TRS application, the improvement is 7%. The numerical and experimental results also showed that both Hammerstein model subsystems are defined effectively using the mMVO-based method, particularly in quadratic output estimation error and a differentiation parameter index. The results further confirmed that the proposed mMVObased method provided better solutions than other optimization techniques, such as PSO, GWO, ALO, MVO and SCA

    Identification of Nonlinear Systems Using the Hammerstein-Wiener Model with Improved Orthogonal Functions

    Get PDF
    Hammerstein-Wiener systems present a structure consisting of three serial cascade blocks. Two are static nonlinearities, which can be described with nonlinear functions. The third block represents a linear dynamic component placed between the first two blocks. Some of the common linear model structures include a rational-type transfer function, orthogonal rational functions (ORF), finite impulse response (FIR), autoregressive with extra input (ARX), autoregressive moving average with exogenous inputs model (ARMAX), and output-error (O-E) model structure. This paper presents a new structure, and a new improvement is proposed, which is consisted of the basic structure of Hammerstein-Wiener models with an improved orthogonal function of Müntz-Legendre type. We present an extension of generalised Malmquist polynomials that represent Müntz polynomials. Also, a detailed mathematical background for performing improved almost orthogonal polynomials, in combination with Hammerstein-Wiener models, is proposed. The proposed approach is used to identify the strongly nonlinear hydraulic system via the transfer function. To compare the results obtained, well-known orthogonal functions of the Legendre, Chebyshev, and Laguerre types are exploited

    Use of system identification techniques for improving airframe finite element models using test data

    Get PDF
    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory

    Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems

    Get PDF
    This paper investigates parameter estimation problems for multivariable controlled autoregressive autoregressive moving average (M-CARARMA) systems. In order to improve the performance of the standard multivariable generalized extended stochastic gradient (M-GESG) algorithm, we derive a partially coupled generalized extended stochastic gradient algorithm by using the auxiliary model. In particular, we divide the identification model into several subsystems based on the hierarchical identification principle and estimate the parameters using the coupled relationship between these subsystems. The simulation results show that the new algorithm can give more accurate parameter estimates of the M-CARARMA system than the M-GESG algorithm
    • …
    corecore