102 research outputs found

    Enumeration of labelled 4-regular planar graphs

    Get PDF
    We present the first combinatorial scheme for counting labelled 4-regular planar graphs through a complete recursive decomposition. More precisely, we show that the exponential generating function of labelled 4-regular planar graphs can be computed effectively as the solution of a system of equations, from which the coefficients can be extracted. As a byproduct, we also enumerate labelled 3-connected 4-regular planar graphs, and simple 4-regular rooted maps

    Planar maps as labeled mobiles

    Full text link
    We extend Schaeffer's bijection between rooted quadrangulations and well-labeled trees to the general case of Eulerian planar maps with prescribed face valences, to obtain a bijection with a new class of labeled trees, which we call mobiles. Our bijection covers all the classes of maps previously enumerated by either the two-matrix model used by physicists or by the bijection with blossom trees used by combinatorists. Our bijection reduces the enumeration of maps to that, much simpler, of mobiles and moreover keeps track of the geodesic distance within the initial maps via the mobiles' labels. Generating functions for mobiles are shown to obey systems of algebraic recursion relations.Comment: 31 pages, 17 figures, tex, lanlmac, epsf; improved tex

    Generic method for bijections between blossoming trees and planar maps

    Full text link
    This article presents a unified bijective scheme between planar maps and blossoming trees, where a blossoming tree is defined as a spanning tree of the map decorated with some dangling half-edges that enable to reconstruct its faces. Our method generalizes a previous construction of Bernardi by loosening its conditions of applications so as to include annular maps, that is maps embedded in the plane with a root face different from the outer face. The bijective construction presented here relies deeply on the theory of \alpha-orientations introduced by Felsner, and in particular on the existence of minimal and accessible orientations. Since most of the families of maps can be characterized by such orientations, our generic bijective method is proved to capture as special cases all previously known bijections involving blossoming trees: for example Eulerian maps, m-Eulerian maps, non separable maps and simple triangulations and quadrangulations of a k-gon. Moreover, it also permits to obtain new bijective constructions for bipolar orientations and d-angulations of girth d of a k-gon. As for applications, each specialization of the construction translates into enumerative by-products, either via a closed formula or via a recursive computational scheme. Besides, for every family of maps described in the paper, the construction can be implemented in linear time. It yields thus an effective way to encode and generate planar maps. In a recent work, Bernardi and Fusy introduced another unified bijective scheme, we adopt here a different strategy which allows us to capture different bijections. These two approaches should be seen as two complementary ways of unifying bijections between planar maps and decorated trees.Comment: 45 pages, comments welcom

    Simple recurrence formulas to count maps on orientable surfaces

    Full text link
    We establish a simple recurrence formula for the number QgnQ_g^n of rooted orientable maps counted by edges and genus. We also give a weighted variant for the generating polynomial Qgn(x)Q_g^n(x) where xx is a parameter taking the number of faces of the map into account, or equivalently a simple recurrence formula for the refined numbers Mgi,jM_g^{i,j} that count maps by genus, vertices, and faces. These formulas give by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large gg. In the very particular case of one-face maps, we recover the Harer-Zagier recurrence formula. Our main formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It is similar in look to the one discovered by Goulden and Jackson for triangulations, and indeed our method to go from the KP equation to the recurrence formula can be seen as a combinatorial simplification of Goulden and Jackson's approach (together with one additional combinatorial trick). All these formulas have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved.Comment: Version 3: We changed the title once again. We also corrected some misprints, gave another equivalent formulation of the main result in terms of vertices and faces (Thm. 5), and added complements on bivariate generating functions. Version 2: We extended the main result to include the ability to track the number of faces. The title of the paper has been changed accordingl

    A bijection for triangulations, quadrangulations, pentagulations, etc

    Full text link
    A dd-angulation is a planar map with faces of degree dd. We present for each integer d≄3d\geq 3 a bijection between the class of dd-angulations of girth dd (i.e., with no cycle of length less than dd) and a class of decorated plane trees. Each of the bijections is obtained by specializing a "master bijection" which extends an earlier construction of the first author. Our construction unifies known bijections by Fusy, Poulalhon and Schaeffer for triangulations (d=3d=3) and by Schaeffer for quadrangulations (d=4d=4). For d≄5d\geq 5, both the bijections and the enumerative results are new. We also extend our bijections so as to enumerate \emph{pp-gonal dd-angulations} (dd-angulations with a simple boundary of length pp) of girth dd. We thereby recover bijectively the results of Brown for simple pp-gonal triangulations and simple 2p2p-gonal quadrangulations and establish new results for d≄5d\geq 5. A key ingredient in our proofs is a class of orientations characterizing dd-angulations of girth dd. Earlier results by Schnyder and by De Fraysseix and Ossona de Mendez showed that simple triangulations and simple quadrangulations are characterized by the existence of orientations having respectively indegree 3 and 2 at each inner vertex. We extend this characterization by showing that a dd-angulation has girth dd if and only if the graph obtained by duplicating each edge d−2d-2 times admits an orientation having indegree dd at each inner vertex

    Uniform random sampling of planar graphs in linear time

    Get PDF
    This article introduces new algorithms for the uniform random generation of labelled planar graphs. Its principles rely on Boltzmann samplers, as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a suitable use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was recently obtained by Gim\'enez and Noy. This gives rise to an extremely efficient algorithm for the random generation of planar graphs. There is a preprocessing step of some fixed small cost. Then, the expected time complexity of generation is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the best previously known time complexity for exact-size uniform sampling of planar graphs with nn vertices, which was a little over O(n7)O(n^7).Comment: 55 page

    Enumeration of labeled 4-regular planar graphs

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this extended abstract, we present the first combinatorial scheme for counting labeled 4-regular planar graphs through a complete recursive decomposition. More precisely, we show that the exponential generating function counting labeled 4-regular planar graphs can be computed effectively as the solution of a system of equations. From here we can extract the coefficients by means of algebraic calculus. As a by-product, we can also compute the algebraic generating function counting labeled 3-connected 4-regular planar maps.Peer ReviewedPostprint (author's final draft

    Some families of increasing planar maps

    Full text link
    Stack-triangulations appear as natural objects when one wants to define some increasing families of triangulations by successive additions of faces. We investigate the asymptotic behavior of rooted stack-triangulations with 2n2n faces under two different distributions. We show that the uniform distribution on this set of maps converges, for a topology of local convergence, to a distribution on the set of infinite maps. In the other hand, we show that rescaled by n1/2n^{1/2}, they converge for the Gromov-Hausdorff topology on metric spaces to the continuum random tree introduced by Aldous. Under a distribution induced by a natural random construction, the distance between random points rescaled by (6/11)log⁥n(6/11)\log n converge to 1 in probability. We obtain similar asymptotic results for a family of increasing quadrangulations

    A unified bijective method for maps: application to two classes with boundaries

    No full text
    International audienceBased on a construction of the first author, we present a general bijection between certain decorated plane trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g. Eulerian maps, simple triangulations,...) are in bijection with a subset of these orientations, and our construction restricts in a simple way on the subset. This gives a general bijective strategy for classes of maps. As a non-trivial application of our method we give the first bijective proofs for counting (rooted) simple triangulations and quadrangulations with a boundary of arbitrary size, recovering enumeration results found by Brown using Tutte's recursive method.En nous appuyant sur une construction du premier auteur, nous donnons une bijection générale entre certains arbres décorés et certaines orientations de cartes planaires sans cycle direct. De nombreuses classes de cartes (par exemple les eulériennes, les triangulations) sont en bijection avec un sous-ensemble de ces orientations, et notre construction se spécialise de maniÚre simple sur le sous-ensemble. Cela donne un cadre bijectif général pour traiter les familles de cartes. Comme application non-triviale de notre méthode nous donnons les premiÚres preuves bijectives pour l'énumération des triangulations et quadrangulations simples (enracinées) ayant un bord de taille arbitraire, et retrouvons ainsi des formules de comptage trouvées par Brown en utilisant la méthode récursive de Tutte
    • 

    corecore