208 research outputs found

    Computability of differential equations

    Get PDF
    In this chapter, we provide a survey of results concerning the computability and computational complexity of differential equations. In particular, we study the conditions which ensure computability of the solution to an initial value problem for an ordinary differential equation (ODE) and analyze the computational complexity of a computable solution. We also present computability results concerning the asymptotic behaviors of ODEs as well as several classically important partial differential equations.info:eu-repo/semantics/acceptedVersio

    Numerical homogenization of time-dependent Maxwell\u27s equations with dispersion effects

    Get PDF
    This thesis studies the propagation of electromagnetic waves in heterogeneous structures such as metamaterials. The governing equations for this problem are Maxwell\u27s equations with highly oscillatory parameters. We use an analytic homogenization result which yields an effective Maxwell system that involves a convolution integral. This convolution represents dispersive effects that result from the interaction of the wave with the (locally) periodic microscopic structure. We discretize in space using the Finite Element Heterogeneous Multiscale Method (FE-HMM) and provide a semi-discrete error estimate. The rigorous error analysis in space is supplemented by a rather standard time discretization at the end of which an efficient, fully discrete method is proposed. This method uses a recursive approximation of the convolution that relies on the assumption that the convolution kernel is an exponential function. Eventually, we present numerical experiments both for the microscopic and the macroscopic scale

    On Vibration Analysis and Reduction for Damped Linear Systems

    No full text

    Time-fractional Cahn-Hilliard equation: Well-posedness, degeneracy, and numerical solutions

    Full text link
    In this paper, we derive the time-fractional Cahn-Hilliard equation from continuum mixture theory with a modification of Fick's law of diffusion. This model describes the process of phase separation with nonlocal memory effects. We analyze the existence, uniqueness, and regularity of weak solutions of the time-fractional Cahn-Hilliard equation. In this regard, we consider degenerating mobility functions and free energies of Landau, Flory--Huggins and double-obstacle type. We apply the Faedo-Galerkin method to the system, derive energy estimates, and use compactness theorems to pass to the limit in the discrete form. In order to compensate for the missing chain rule of fractional derivatives, we prove a fractional chain inequality for semiconvex functions. The work concludes with numerical simulations and a sensitivity analysis showing the influence of the fractional power. Here, we consider a convolution quadrature scheme for the time-fractional component, and use a mixed finite element method for the space discretization

    Evolution equations for systems governed by social interactions

    Get PDF

    Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators

    Full text link
    We study the dynamics of the large N limit of the Kuramoto model of coupled phase oscillators, subject to white noise. We introduce the notion of shadow inertial manifold and we prove their existence for this model, supporting the fact that the long term dynamics of this model is finite dimensional. Following this, we prove that the global attractor of this model takes one of two forms. When coupling strength is below a critical value, the global attractor is a single equilibrium point corresponding to an incoherent state. Conversely, when coupling strength is beyond this critical value, the global attractor is a two-dimensional disk composed of radial trajectories connecting a saddle equilibrium (the incoherent state) to an invariant closed curve of locally stable equilibria (partially synchronized state). Our analysis hinges, on the one hand, upon sharp existence and uniqueness results and their consequence for the existence of a global attractor, and, on the other hand, on the study of the dynamics in the vicinity of the incoherent and synchronized equilibria. We prove in particular non-linear stability of each synchronized equilibrium, and normal hyperbolicity of the set of such equilibria. We explore mathematically and numerically several properties of the global attractor, in particular we discuss the limit of this attractor as noise intensity decreases to zero.Comment: revised version, 28 pages, 4 figure

    Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit

    Get PDF
    We prove that the unique entropy solution to a scalar nonlinear conservation law with strictly monotone velocity and nonnegative initial condition can be rigorously obtained as the large particle limit of a microscopic follow-the-leader type model, which is interpreted as the discrete Lagrangian approximation of the nonlinear scalar conservation law. More precisely, we prove that the empirical measure (respectively the discretised density) obtained from the follow-the-leader system converges in the 1-Wasserstein topology (respectively in Lloc1L^1_{loc}) to the unique Kruzkov entropy solution of the conservation law. The initial data are taken in L1∩L∞L^1\cap L^\infty, nonnegative, and with compact support, hence we are able to handle densities with vacuum. Our result holds for a reasonably general class of velocity maps (including all the relevant examples in the applications, e.g. in the Lighthill-Whitham-Richards model for traffic flow) with possible degenerate slope near the vacuum state. The proof of the result is based on discrete BV estimates and on a discrete version of the one-sided Oleinik-type condition. In particular, we prove that the regularizing effect L1∩L∞↦BVL^1\cap L^\infty \mapsto BV for nonlinear scalar conservation laws is intrinsic of the discrete model
    • …
    corecore