4,476 research outputs found

    Recursive Streamflow Forecasting: A State-Space Approach

    Get PDF

    Recursive Streamflow Forecasting: A State-Space Approach

    Get PDF

    Optimal input design and parameter estimation for continuous-time dynamical systems

    Get PDF
    Diese Arbeit behandelt die Themengebiete Design of Experiments (DoE) und Parameterschätzung für zeitkontinuierliche Systeme, welche in der modernen Regelungstheorie eine wichtige Rolle spielen. Im gewählten Kontext untersucht DoE die Auswirkungen von verschiedenen Rahmenbedingungen von Simulations- bzw. Messexperimenten auf die Qualität der Parameterschätzung, wobei der Fokus auf der Anwendung der Theorie auf praxisrelevante Problemstellungen liegt. Dafür wird die weithin bekannte Fisher-Matrix eingeführt und die resultierende nicht lineare Optimierungsaufgabe angeschrieben. An einem PT1-System wird der Informationsgehalt von Signalen und dessen Auswirkungen auf die Parameterschätzung gezeigt. Danach konzentriert sich die Arbeit auf ein Teilgebiet von DoE, nämlich Optimal Input Design (OID), und wird am Beispiel eines 1D-Positioniersystems im Detail untersucht. Ein Vergleich mit häufig verwendeten Anregungssignalen zeigt, dass generierte Anregungssignale (OID) oft einen höheren Informationsgehalt aufweisen und mit genaueren Schätzwerten einhergeht. Zusätzlicher Benefit ist, dass Beschränkungen an Eingangs-, Ausgangs- und Zustandsgrößen einfach in die Optimierungsaufgabe integriert werden können. Der zweite Teil der Arbeit behandelt Methoden zur Parameterschätzung von zeitkontinuierlichen Modellen mit dem Fokus auf der Verwendung von Modulationsfunktionen (MF) bzw. Poisson-Moment Functionals (PMF) zur Vermeidung der zeitlichen Ableitungen und Least-Squares zur Lösung des resultierenden überbestimmten Gleichungssystems. Bei verrauschten Messsignalen ergibt sich daraus sofort die Problematik von nicht erwartungstreuen Schätzergebnissen (Bias). Aus diesem Grund werden Methoden zur Schätzung und Kompensation von Bias Termen diskutiert. Beitrag dieser Arbeit ist vor allem die detaillierte Aufarbeitung eines Ansatzes zur Biaskompensation bei Verwendung von PMF und Least-Squares für lineare Systeme und dessen Erweiterung auf (leicht) nicht lineare Systeme. Der vorgestellte Ansatz zur Biaskompensation (BC-OLS) wird am nicht linearen 1D-Servo in der Simulation und mit Messdaten validiert und in der Simulation mit anderen Methoden, z.B., Total-Least-Squares verglichen. Zusätzlich wird der Ansatz von PMF auf die weiter gefasste Systemklasse der Modulationsfunktionen (MF) erweitert. Des Weiteren wird ein praxisrelevantes Problem der Parameteridentifikation diskutiert, welches auftritt, wenn das Systemverhalten nicht gänzlich von der Identifikationsgleichung beschrieben wird. Am 1D-Servo wird gezeigt, dass ein Deaktivieren und Reaktivieren der PMF Filter mit geeigneter Initialisierung diese Problematik einfach löst.This thesis addresses two topics that play a significant role in modern control theory: design of experiments (DoE) and parameter estimation methods for continuous-time (CT) models. In this context, DoE focuses on the impact of experimental design regarding the accuracy of a subsequent estimation of unknown model parameters and applying the theory to real-world applications and its detailed analysis. We introduce the Fisher-information matrix (FIM), consisting of the parameter sensitivities and the resulting highly nonlinear optimization task. By a first-order system, we demonstrate the computation of the information content, its visualization, and an illustration of the effects of higher Fisher information on parameter estimation quality. After that, the topic optimal input design (OID), a subarea of DoE, will be thoroughly explored on the practice-relevant linear and nonlinear model of a 1D-position servo system. Comparison with standard excitation signals shows that the OID signals generally provide higher information content and lead to more accurate parameter estimates using least-squares methods. Besides, this approach allows taking into account constraints on input, output, and state variables. In the second major topic of this thesis, we treat parameter estimation methods for CT systems, which provide several advantages to identify discrete-time (DT) systems, e.g., allows physical insight into model parameters. We focus on modulating function method (MFM) or Poisson moment functionals (PMF) and least-squares to estimate unknown model parameters. In the case of noisy measurement data, the problem of biased parameter estimation arises immediately. That is why we discuss the computation and compensation of the so-called estimation bias in detail. Besides the detailed elaboration of a bias compensating estimation method, this work’s main contribution is, based on PMF and least squares for linear systems, the extension to at least slightly nonlinear systems. The derived bias-compensated ordinary least-squares (BCOLS) approach for obtaining asymptotically unbiased parameter estimates is tested on a nonlinear 1D-servo model in the simulation and measurement. A comparison with other methods for bias compensation or avoidance, e.g., total least-squares (TLS), is performed. Additionally, the BC-OLS method is applied to the more general MFM. Furthermore, a practical issue of parameter estimation is discussed, which occurs when the system behavior leaves and re-enters the space covered by the identification equation. Using the 1D-servo system, one can show that disabling and re-enabling the PMF filters with appropriate initialization can solve this problem

    Introduction to Random Signals and Noise

    Get PDF
    Random signals and noise are present in many engineering systems and networks. Signal processing techniques allow engineers to distinguish between useful signals in audio, video or communication equipment, and interference, which disturbs the desired signal. With a strong mathematical grounding, this text provides a clear introduction to the fundamentals of stochastic processes and their practical applications to random signals and noise. With worked examples, problems, and detailed appendices, Introduction to Random Signals and Noise gives the reader the knowledge to design optimum systems for effectively coping with unwanted signals.\ud \ud Key features:\ud • Considers a wide range of signals and noise, including analogue, discrete-time and bandpass signals in both time and frequency domains.\ud • Analyses the basics of digital signal detection using matched filtering, signal space representation and correlation receiver.\ud • Examines optimal filtering methods and their consequences.\ud • Presents a detailed discussion of the topic of Poisson processed and shot noise.\u

    On Markov parameters in system identification

    Get PDF
    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest

    Examining macroeconomic models through the lens of asset pricing

    Get PDF
    Dynamic stochastic equilibrium models of the macro economy are designed to match the macro time series including impulse response functions. Since these models aim to be structural, they also have implications for asset pricing. To assess these implications, we explore asset pricing counterparts to impulse response functions. We use the resulting dynamic value decomposition (DVD) methods to quantify the exposures of macroeconomic cash flows to shocks over alternative investment horizons and the corresponding prices or compensations that investors must receive because of the exposure to such shocks. We build on the continuous-time methods developed in Hansen and Scheinkman (2010), Borovicka et al. (2011) and Hansen (2011) by constructing discrete-time shock elasticities that measure the sensitivity of cash flows and their prices to economic shocks including economic shocks featured in the empirical macroeconomics literature. By design, our methods are applicable to economic models that are nonlinear, including models with stochastic volatility. We illustrate our methods by analyzing the asset pricing model of Ai et al. (2010) with tangible and intangible capital.Asset pricing ; Macroeconomics ; Markov processes

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1

    Multivariate financial econometrics: with applications to volatility modelling, option pricing and asset allocation

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Stochastic Modeling and Estimation of Wireless Channels with Application to Ultra Wide Band Systems

    Get PDF
    This thesis is concerned with modeling of both space and time variations of Ultra Wide Band (UWB) indoor channels. The most common empirically determined amplitude distribution in many UWB environments is Nakagami distribution. The latter is generalized to stochastic diffusion processes which capture the dynamics of UWB channels. In contrast with the traditional models, the statistics of the proposed models are shown to be time varying, but converge in steady state to their static counterparts. System identification algorithms are used to extract various channel parameters using received signal measurement data, which are usually available at the receiver. The expectation maximization (EM) algorithm and the Kalman filter (KF) are employed in estimating channel parameters as well as the inphase and quadrature components, respectively. The proposed algorithms are recursive and therefore can be implemented in real time. Further, sufficient conditions for the convergence of the EM algorithm are provided. Comparison with recursive Least-square (LS) algorithms is carried out using experimental measurements. Distributed stochastic power control algorithms based on the fixed point theorem and stochastic approximations are used to solve for the optimal transmit power problem and numerical results are also presented. A framework which can capture the statistics of the overall received signal and a methodology to estimate parameters of the counting process based on the received signal is developed. Furthermore, second moment statistics and characteristic functions are computed explicitly and considered as an extension of Rice’s shot noise analysis. Another two important components, input design and model selection are also considered. Gel’fand n-widths and Time n-widths are used to represent the inherent error introduced by input design. Kolmogorov n-width is used to characterize the representation error introduced by model selection. In particular, it is shown that the optimal model for reducing the representation error is a finite impulse response (FIR) model and the optimal input is an impulse at the start of the observation interval
    corecore