10,307 research outputs found

    A set-membership state estimation algorithm based on DC programming

    Get PDF
    This paper presents a new approach to guaranteed state estimation for nonlinear discrete-time systems with a bounded description of noise and parameters. The sets of states that are consistent with the evolution of the system, the measured outputs and bounded noise and parameters are represented by zonotopes. DC programming and intersection operations are used to obtain a tight bound. An example is given to illustrate the proposed algorithm.Ministerio de Ciencia y Tecnología DPI2006-15476-C02-01Ministerio de Ciencia y Tecnología DPI2007-66718-C04-01

    Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    Full text link
    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \emph{flow} among sensors (the \emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \emph{gathering} measured by the sensors (the \emph{sensing} or \emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.Comment: Submitted for publication, 30 page

    PARAMETRIC ESTIMATION OF DIFFUSION PROCESSES SAMPLED AT FIRST EXIT TIME

    Get PDF
    This paper introduces a family of recursively defined estimators of the parameters of a diffusion process. We use ideas of stochastic algorithms for the construction of the estimators. Asymptotic consistency of these estimators and asymptotic normality of an appropriate normalization are proved. The results are applied to two examples from the financial literature; viz., Cox-Ingersoll-Ross' model and the constant elasticity of variance (CEV) process illustrate the use of the technique proposed herein.Continuous time Markov processes, discrete time sampling, diffusions, interest rate models, stochastic algorithms.
    corecore