2,463 research outputs found

    Piecewise Linear Approximations of Digitized Space Curves with Applications

    Get PDF

    Fast reliable interrogation of procedurally defined implicit surfaces using extended revised affine arithmetic.

    Get PDF
    Techniques based on interval and previous termaffine arithmetic next term and their modifications are shown to provide previous term reliable next term function range evaluation for the purposes of previous termsurface interrogation.next term In this paper we present a technique for the previous termreliable interrogation of implicit surfacesnext term using a modification of previous termaffine arithmeticnext term called previous term revised affine arithmetic.next term We extend the range of functions presented in previous termrevised affine arithmeticnext term by introducing previous termaffinenext term operations for arbitrary functions such as set-theoretic operations with R-functions, blending and conditional operators. The obtained previous termaffinenext term forms of arbitrary functions provide previous termfasternext term and tighter function range evaluation. Several case studies for operations using previous termaffinenext term forms are presented. The proposed techniques for previous termsurface interrogationnext term are tested using ray-previous termsurfacenext term intersection for ray-tracing and spatial cell enumeration for polygonisation. These applications with our extensions provide previous termfast and reliablenext term rendering of a wide range of arbitrary previous termprocedurally defined implicit surfacesnext term (including polynomial previous termsurfaces,next term constructive solids, pseudo-random objects, previous termprocedurally definednext term microstructures, and others). We compare the function range evaluation technique based on previous termextended revised affine arithmeticnext term with other previous termreliablenext term techniques based on interval and previous termaffine arithmeticnext term to show that our technique provides the previous termfastestnext term and tightest function range evaluation for previous termfast and reliable interrogation of procedurally defined implicit surfaces.next term Research Highlights The main contributions of this paper are as follows. ► The widening of the scope of previous termreliablenext term ray-tracing and spatial enumeration algorithms for previous termsurfacesnext term ranging from algebraic previous termsurfaces (definednext term by polynomials) to general previous termimplicit surfaces (definednext term by function evaluation procedures involving both previous termaffinenext term and non-previous termaffinenext term operations based on previous termrevised affine arithmetic)next term. ► The introduction of a technique for representing procedural models using special previous termaffinenext term forms (illustrated by case studies of previous termaffinenext term forms for set-theoretic operations in the form of R-functions, blending operations and conditional operations). ► The detailed derivation of special previous termaffinenext term forms for arbitrary operators

    On the connection between the Nekhoroshev theorem and Arnold Diffusion

    Full text link
    The analytical techniques of the Nekhoroshev theorem are used to provide estimates on the coefficient of Arnold diffusion along a particular resonance in the Hamiltonian model of Froeschl\'{e} et al. (2000). A resonant normal form is constructed by a computer program and the size of its remainder Ropt||R_{opt}|| at the optimal order of normalization is calculated as a function of the small parameter ϵ\epsilon. We find that the diffusion coefficient scales as DRopt3D\propto||R_{opt}||^3, while the size of the optimal remainder scales as Roptexp(1/ϵ0.21)||R_{opt}|| \propto\exp(1/\epsilon^{0.21}) in the range 104ϵ10210^{-4}\leq\epsilon \leq 10^{-2}. A comparison is made with the numerical results of Lega et al. (2003) in the same model.Comment: Accepted in Celestial Mechanics and Dynamical Astronom

    Theory and algorithms for swept manifold intersections

    Get PDF
    Recent developments in such fields as computer aided geometric design, geometric modeling, and computational topology have generated a spate of interest towards geometric objects called swept volumes. Besides their great applicability in various practical areas, the mere geometry and topology of these entities make them a perfect testbed for novel approaches aimed at analyzing and representing geometric objects. The structure of swept volumes reveals that it is also important to focus on a little simpler, although a very similar type of objects - swept manifolds. In particular, effective computability of swept manifold intersections is of major concern. The main goal of this dissertation is to conduct a study of swept manifolds and, based on the findings, develop methods for computing swept surface intersections. The twofold nature of this goal prompted a division of the work into two distinct parts. At first, a theoretical analysis of swept manifolds is performed, providing a better insight into the topological structure of swept manifolds and unveiling several important properties. In the course of the investigation, several subclasses of swept manifolds are introduced; in particular, attention is focused on regular and critical swept manifolds. Because of the high applicability, additional effort is put into analysis of two-dimensional swept manifolds - swept surfaces. Some of the valuable properties exhibited by such surfaces are generalized to higher dimensions by introducing yet another class of swept manifolds - recursive swept manifolds. In the second part of this work, algorithms for finding swept surface intersections are developed. The need for such algorithms is necessitated by a specific structure of swept surfaces that precludes direct employment of existing intersection methods. The new algorithms are designed by utilizing the underlying ideas of existing intersection techniques and making necessary technical modifications. Such modifications are achieved by employing properties of swept surfaces obtained in the course of the theoretical study. The intersection problems is also considered from a little different prospective. A novel, homology based approach to local characterization of intersections of submanifolds and s-subvarieties of a Euclidean space is presented. It provides a method for distinguishing between transverse and tangential intersection points and determining, in some cases, whether the intersection point belongs to a boundary. At the end, several possible applications of the obtained results are described, including virtual sculpting and modeling of heterogeneous materials

    Polygonization of Multi-Component Non-Manifold Implicit Surfaces through A Symbolic-Numerical Continuation Algorithm

    Get PDF
    In computer graphics, most algorithms for sampling implicit surfaces use a 2-points numerical method. If the surface-describing function evaluates positive at the first point and negative at the second one, we can say that the surface is located somewhere between them. Surfaces detected this way are called sign-variant implicit surfaces. However, 2-points numerical methods may fail to detect and sample the surface because the functions of many implicit surfaces evaluate either positive or negative everywhere around them. These surfaces are here called sign-invariant implicit surfaces. In this paper, instead of using a 2-points numerical method, we use a 1-point numerical method to guarantee that our algorithm detects and samples both sign-variant and sign-invariant surface components or branches correctly. This algorithm follows a continuation approach to tessellate implicit surfaces, so that it applies symbolic factorization to decompose the function expression into symbolic components, sampling then each symbolic function component separately. This ensures that our algorithm detects, samples, and triangulates most components of implicit surfaces

    Regularized implicit surface reconstruction from points and normals

    Get PDF

    Least Squares Subdivision Surfaces

    Get PDF
    International audienceThe usual approach to design subdivision schemes for curves and surfaces basically consists in combining proper rules for regular configurations, with some specific heuristics to handle extraordinary vertices. In this paper, we introduce an alternative approach, called Least Squares Subdivision Surfaces (LS^3), where the key idea is to iteratively project each vertex onto a local approximation of the current polygonal mesh. While the resulting procedure have the same complexity as simpler subdivision schemes, our method offers much higher visual quality, especially in the vicinity of extraordinary vertices. Moreover, we show it can be easily generalized to support boundaries and creases. The fitting procedure allows for a local control of the surface from the normals, making LS^3 very well suited for interactive freeform modeling applications. We demonstrate our approach on diadic triangular and quadrangular refinement schemes, though it can be applied to any splitting strategies
    corecore