1,428 research outputs found

    Motion picture restoration

    Get PDF
    This dissertation presents algorithms for restoring some of the major corruptions observed in archived film or video material. The two principal problems of impulsive distortion (Dirt and Sparkle or Blotches) and noise degradation are considered. There is also an algorithm for suppressing the inter-line jitter common in images decoded from noisy video signals. In the case of noise reduction and Blotch removal the thesis considers image sequences to be three dimensional signals involving evolution of features in time and space. This is necessary if any process presented is to show an improvement over standard two-dimensional techniques. It is important to recognize that consideration of image sequences must involve an appreciation of the problems incurred by the motion of objects in the scene. The most obvious implication is that due to motion, useful three dimensional processing does not necessarily proceed in a direction 'orthogonal' to the image frames. Therefore, attention is given to discussing motion estimation as it is used for image sequence processing. Some discussion is given to image sequence models and the 3D Autoregressive model is investigated. A multiresolution BM scheme is used for motion estimation throughout the major part of the thesis. Impulsive noise removal in image processing has been traditionally achieved by the use of median filter structures. A new three dimensional multilevel median structure is presented in this work with the additional use of a detector which limits the distortion caused by the filters . This technique is found to be extremely effective in practice and is an alternative to the traditional global median operation. The new median filter is shown to be superior to those previously presented with respect to the ability to reject the kind of distortion found in practice. A model based technique using the 3D AR model is also developed for detecting and removing Blotches. This technique achieves better fidelity at the expense of heavier computational load. Motion compensated 3D IIR and FIR Wiener filters are investigated with respect to their ability to reject noise in an image sequence. They are compared to several algorithms previously presented which are purely temporal in nature. The filters presented are found to be effective and compare favourably to the other algorithms. The 3D filtering process is superior to the purely temporal process as expected. The algorithm that is presented for suppressing inter-line jitter uses a 2D AR model to estimate and correct the relative displacements between the lines. The output image is much more satisfactory to the observer although in a severe case some drift of image features is to be expected. A suggestion for removing this drift is presented in the conclusions. There are several remaining problems in moving video. In particular, line scratches and picture shake/roll. Line scratches cannot be detected successfully by the detectors presented and so cannot be removed efficiently. Suppressing shake and roll involves compensating the entire frame for motion and there is a need to separate global from local motion. These difficulties provide ample opportunity for further research

    A Comprehensive Review of Image Restoration and Noise Reduction Techniques

    Get PDF
    Images play a crucial role in modern life and find applications in diverse fields, ranging from preserving memories to conducting scientific research. However, images often suffer from various forms of degradation such as blur, noise, and contrast loss. These degradations make images difficult to interpret, reduce their visual quality, and limit their practical applications. To overcome these challenges, image restoration and noise reduction techniques have been developed to recover degraded images and enhance their quality. These techniques have gained significant importance in recent years, especially with the increasing use of digital imaging in various fields such as medical imaging, surveillance, satellite imaging, and many others. This paper presents a comprehensive review of image restoration and noise reduction techniques, encompassing spatial and frequency domain methods, and deep learning-based techniques. The paper also discusses the evaluation metrics utilized to assess the effectiveness of these techniques and explores future research directions in this field. The primary objective of this paper is to offer a comprehensive understanding of the concepts and methods involved in image restoration and noise reduction

    Space-Variant Image Restoration with Running Sinusoidal Transforms

    Get PDF

    Image Restoration for Long-Wavelength Imaging Systems

    Get PDF

    Segmentation-assisted detection of dirt impairments in archived film sequences

    Get PDF
    A novel segmentation-assisted method for film dirt detection is proposed. We exploit the fact that film dirt manifests in the spatial domain as a cluster of connected pixels whose intensity differs substantially from that of its neighborhood and we employ a segmentation-based approach to identify this type of structure. A key feature of our approach is the computation of a measure of confidence attached to detected dirt regions which can be utilized for performance fine tuning. Another important feature of our algorithm is the avoidance of the computational complexity associated with motion estimation. Our experimental framework benefits from the availability of manually derived as well as objective ground truth data obtained using infrared scanning. Our results demonstrate that the proposed method compares favorably with standard spatial, temporal and multistage median filtering approaches and provides efficient and robust detection for a wide variety of test material

    Structural adaptive anisotropic recursive filter for blind medical image deconvolution

    Get PDF
    Performance of radiographic diagnosis and therapeutic intervention heavily depends on the quality of acquired images. Over decades, a range of pre-processing for image enhancement has been explored. Among the most recent proposals is iterative blinded image deconvolution, which aims to identify the inheritant point spread function, degrading images during acquisition. Thus far, the technique has been known for its poor convergence and stability and was recently superseded by non-negativity and support constraints recursive image filtering. However, the latter requires a priori on intrinsic properties of imaging sensor, e.g., distribution, noise floor and field of view. Most importantly, since homogeneity assumption was implied by deconvolution, recovered degrading function was global, disregarding fidelity of underlying objects. This paper proposes a modified recursive filtering with similar non-negativity constraints, but also taking into account local anisotropic structure of content. The experiment reported herein demonstrates its superior convergence property, while also preserving crucial image feature

    Image gathering and coding for digital restoration: Information efficiency and visual quality

    Get PDF
    Image gathering and coding are commonly treated as tasks separate from each other and from the digital processing used to restore and enhance the images. The goal is to develop a method that allows us to assess quantitatively the combined performance of image gathering and coding for the digital restoration of images with high visual quality. Digital restoration is often interactive because visual quality depends on perceptual rather than mathematical considerations, and these considerations vary with the target, the application, and the observer. The approach is based on the theoretical treatment of image gathering as a communication channel (J. Opt. Soc. Am. A2, 1644(1985);5,285(1988). Initial results suggest that the practical upper limit of the information contained in the acquired image data range typically from approximately 2 to 4 binary information units (bifs) per sample, depending on the design of the image-gathering system. The associated information efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from approximately 0.3 to 0.5 bif per bit without coding to approximately 0.5 to 0.9 bif per bit with lossless predictive compression and Huffman coding. The visual quality that can be attained with interactive image restoration improves perceptibly as the available information increases to approximately 3 bifs per sample. However, the perceptual improvements that can be attained with further increases in information are very subtle and depend on the target and the desired enhancement
    • …
    corecore