5,233 research outputs found

    Dual Attention Networks for Visual Reference Resolution in Visual Dialog

    Full text link
    Visual dialog (VisDial) is a task which requires an AI agent to answer a series of questions grounded in an image. Unlike in visual question answering (VQA), the series of questions should be able to capture a temporal context from a dialog history and exploit visually-grounded information. A problem called visual reference resolution involves these challenges, requiring the agent to resolve ambiguous references in a given question and find the references in a given image. In this paper, we propose Dual Attention Networks (DAN) for visual reference resolution. DAN consists of two kinds of attention networks, REFER and FIND. Specifically, REFER module learns latent relationships between a given question and a dialog history by employing a self-attention mechanism. FIND module takes image features and reference-aware representations (i.e., the output of REFER module) as input, and performs visual grounding via bottom-up attention mechanism. We qualitatively and quantitatively evaluate our model on VisDial v1.0 and v0.9 datasets, showing that DAN outperforms the previous state-of-the-art model by a significant margin.Comment: EMNLP 201

    Tracking Gaze and Visual Focus of Attention of People Involved in Social Interaction

    Get PDF
    The visual focus of attention (VFOA) has been recognized as a prominent conversational cue. We are interested in estimating and tracking the VFOAs associated with multi-party social interactions. We note that in this type of situations the participants either look at each other or at an object of interest; therefore their eyes are not always visible. Consequently both gaze and VFOA estimation cannot be based on eye detection and tracking. We propose a method that exploits the correlation between eye gaze and head movements. Both VFOA and gaze are modeled as latent variables in a Bayesian switching state-space model. The proposed formulation leads to a tractable learning procedure and to an efficient algorithm that simultaneously tracks gaze and visual focus. The method is tested and benchmarked using two publicly available datasets that contain typical multi-party human-robot and human-human interactions.Comment: 15 pages, 8 figures, 6 table
    corecore