24 research outputs found

    The META-T Compiler-Compiler

    Get PDF
    This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target " for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame

    Compilation techniques for irregular problems on parallel machines

    Get PDF
    Massively parallel computers have ushered in the era of teraflop computing. Even though large and powerful machines are being built, they are used by only a fraction of the computing community. The fundamental reason for this situation is that parallel machines are difficult to program. Development of compilers that automatically parallelize programs will greatly increase the use of these machines.;A large class of scientific problems can be categorized as irregular computations. In this class of computation, the data access patterns are known only at runtime, creating significant difficulties for a parallelizing compiler to generate efficient parallel codes. Some compilers with very limited abilities to parallelize simple irregular computations exist, but the methods used by these compilers fail for any non-trivial applications code.;This research presents development of compiler transformation techniques that can be used to effectively parallelize an important class of irregular programs. A central aim of these transformation techniques is to generate codes that aggressively prefetch data. Program slicing methods are used as a part of the code generation process. In this approach, a program written in a data-parallel language, such as HPF, is transformed so that it can be executed on a distributed memory machine. An efficient compiler runtime support system has been developed that performs data movement and software caching

    Parallel machine architecture and compiler design facilities

    Get PDF
    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role

    External Memory Algorithms for Factoring Sparse Matrices

    Get PDF
    We consider the factorization of sparse symmetric matrices in the context of a two-layer storage system: disk/core. When the core is sufficiently large the factorization can be performed in-core. In this case we must read the input, compute, and write the output, in this sequence. On the other hand, when the core is not large enough, the factorization becomes out-of-core, which means that data movement and computation must be interleaved. We identify two major out-of-core factorization scenarios: read-once/write-once (R1/W1) and read-many/write-many (RM/WM). The former requires minimum traffic, exactly as much as the in-core factorization: reading the input and writing the output. More traffic is required for the latter. We investigate three issues: the size of the core that determines the boundary between the two out-of-core scenarios, the in-core data structure reorganizations required by the R1/W1 factorization and the traffic required by the RM/WM factorization. We use three common factorization algorithms: left-looking, right-looking and multifrontal. In the R1/W1 scenario, our results indicate that for problems with good separators, such as those coming from the discretization of partial differential equations, ordered with nested dissection, right-looking and multifrontal factorization perform slightly better than left-looking factorization. There are, however, applications for which multifrontal is a bad choice, requiring too much temporary storage. On the other hand, right-looking factorization should be avoided in the RM/WM scenario. Left-looking is a good choice, but only if data is blocked along one dimension. Multifrontal performs well for both one and two dimensional blocks as long as not too much storage is required. We also explore a framework for a software implementation. We have implemented an in-core solver that relies on some object-oriented constructs. Most of the code is written in C++, except for some kernels written in Fortran 77. We intend to add out-of-core functionality to the code and data movement is a major concern. Implicit data movement represents the easy way, but, as some of our experiments show, good performance can be achieved only with explicit data movement. This complicates the code and we expect a substantial effort in order to implement an efficient out-of-core solver

    Development of an MSC language and compiler, volume 1

    Get PDF
    Higher order programming language and compiler for advanced computer software system to be used with manned space flights between 1972 and 198

    The hArtes Tool Chain

    Get PDF
    This chapter describes the different design steps needed to go from legacy code to a transformed application that can be efficiently mapped on the hArtes platform

    Advancing HAL to an operational status

    Get PDF
    The development of the HAL language and the compiler implementation of the mathematical subset of the language have been completed. On-site support, training, and maintenance of this compiler were enlarged to broaden the implementation of HAL to include all features of the language specification for NASA manned space usage. A summary of activities associated with the HAL compiler for the UNIVAC 1108 is given

    The performance advantages of a high level language machine.

    Get PDF
    Massachusetts Institute of Technology. Dept. of Electrical Engineering. Thesis. 1972. B.S.MICROFICHE COPY ALSO AVAILABLE IN BARKER ENGINEERING LIBRARY.Bibliography: leaves 48-54.B.S
    corecore