338 research outputs found

    The History of the DReaM Group

    Get PDF

    Humans decompose tasks by trading off utility and computational cost

    Full text link
    Human behavior emerges from planning over elaborate decompositions of tasks into goals, subgoals, and low-level actions. How are these decompositions created and used? Here, we propose and evaluate a normative framework for task decomposition based on the simple idea that people decompose tasks to reduce the overall cost of planning while maintaining task performance. Analyzing 11,117 distinct graph-structured planning tasks, we find that our framework justifies several existing heuristics for task decomposition and makes predictions that can be distinguished from two alternative normative accounts. We report a behavioral study of task decomposition (N=806N=806) that uses 30 randomly sampled graphs, a larger and more diverse set than that of any previous behavioral study on this topic. We find that human responses are more consistent with our framework for task decomposition than alternative normative accounts and are most consistent with a heuristic -- betweenness centrality -- that is justified by our approach. Taken together, our results provide new theoretical insight into the computational principles underlying the intelligent structuring of goal-directed behavior

    Integrating Testing and Interactive Theorem Proving

    Full text link
    Using an interactive theorem prover to reason about programs involves a sequence of interactions where the user challenges the theorem prover with conjectures. Invariably, many of the conjectures posed are in fact false, and users often spend considerable effort examining the theorem prover's output before realizing this. We present a synergistic integration of testing with theorem proving, implemented in the ACL2 Sedan (ACL2s), for automatically generating concrete counterexamples. Our method uses the full power of the theorem prover and associated libraries to simplify conjectures; this simplification can transform conjectures for which finding counterexamples is hard into conjectures where finding counterexamples is trivial. In fact, our approach even leads to better theorem proving, e.g. if testing shows that a generalization step leads to a false conjecture, we force the theorem prover to backtrack, allowing it to pursue more fruitful options that may yield a proof. The focus of the paper is on the engineering of a synergistic integration of testing with interactive theorem proving; this includes extending ACL2 with new functionality that we expect to be of general interest. We also discuss our experience in using ACL2s to teach freshman students how to reason about their programs.Comment: In Proceedings ACL2 2011, arXiv:1110.447
    • …
    corecore