2,177 research outputs found

    A Recursive Threshold Visual Cryptography Scheme

    Get PDF
    This paper presents a recursive hiding scheme for 2 out of 3 secret sharing. In recursive hiding of secrets, the user encodes additional information about smaller secrets in the shares of a larger secret without an expansion in the size of the latter, thereby increasing the efficiency of secret sharing. We present applications of our proposed protocol to images as well as text.Comment: 8 page

    Enhancing Data Security by Making Data Disappear in a P2P Systems

    Get PDF
    This paper describes the problem of securing data by making it disappear after some time limit, making it impossible for it to be recovered by an unauthorized party. This method is in response to the need to keep the data secured and to protect the privacy of archived data on the servers, Cloud and Peer-to-Peer architectures. Due to the distributed nature of these architectures, it is impossible to destroy the data completely. So, we store the data by applying encryption and then manage the key, which is easier to do as the key is small and it can be hidden in the DHT (Distributed hash table). Even if the keys in the DHT and the encrypted data were compromised, the data would still be secure. This paper describes existing solutions, points to their limitations and suggests improvements with a new secure architecture. We evaluated and executed this architecture on the Java platform and proved that it is more secure than other architectures.Comment: 18 page

    Comparison of Secret Splitting, Secret Sharing and Recursive Threshold Visual Cryptography for Security of Handwritten Images

    Get PDF
    The secret sharing is a method to protect confidentiality and integrity of the secret messages by distributing the message shares into several recipients. The secret message could not be revealed unless the recipients exchange and collect shares to reconstruct the actual message. Even though the attacker obtain shares shadow during the share exchange, it would be impossible for the attacker to understand the correct share. There are few algorithms have been developed for secret sharing, e.g. secret splitting, Asmuth-Bloom secret sharing protocol, visual cryptography, etc. There is an unanswered question in this research about which method provides best level of security and efficiency in securing message. In this paper, we evaluate the performance of three methods, i.e. secret splitting, secret sharing, and recursive threshold visual cryptography for handwritten image security in terms of execution time and mean squared error (MSE) simulation. Simulation results show the secret splitting algorithm produces the shortest time of execution. On the other hand, the MSE simulation result that the three methods can reconstruct the original image very well

    More is Less: Perfectly Secure Oblivious Algorithms in the Multi-Server Setting

    Get PDF
    The problem of Oblivious RAM (ORAM) has traditionally been studied in a single-server setting, but more recently the multi-server setting has also been considered. Yet it is still unclear whether the multi-server setting has any inherent advantages, e.g., whether the multi-server setting can be used to achieve stronger security goals or provably better efficiency than is possible in the single-server case. In this work, we construct a perfectly secure 3-server ORAM scheme that outperforms the best known single-server scheme by a logarithmic factor. In the process, we also show, for the first time, that there exist specific algorithms for which multiple servers can overcome known lower bounds in the single-server setting.Comment: 36 pages, Accepted in Asiacrypt 201
    • …
    corecore