401 research outputs found

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    On continuation-passing transformations and expected cost analysis

    Get PDF
    We define a continuation-passing style (CPS) translation for a typed \u3bb-calculus with probabilistic choice, unbounded recursion, and a tick operator - for modeling cost. The target language is a (non-probabilistic) \u3bb-calculus, enriched with a type of extended positive reals and a fixpoint operator. We then show that applying the CPS transform of an expression M to the continuation \u3bb v. 0 yields the expected cost of M. We also introduce a formal system for higher-order logic, called EHOL, prove it sound, and show it can derive tight upper bounds on the expected cost of classic examples, including Coupon Collector and Random Walk. Moreover, we relate our translation to Kaminski et al.'s ert-calculus, showing that the latter can be recovered by applying our CPS translation to (a generalization of) the classic embedding of imperative programs into \u3bb-calculus. Finally, we prove that the CPS transform of an expression can also be used to compute pre-expectations and to reason about almost sure termination

    Monoidal computer III: A coalgebraic view of computability and complexity

    Full text link
    Monoidal computer is a categorical model of intensional computation, where many different programs correspond to the same input-output behavior. The upshot of yet another model of computation is that a categorical formalism should provide a much needed high level language for theory of computation, flexible enough to allow abstracting away the low level implementation details when they are irrelevant, or taking them into account when they are genuinely needed. A salient feature of the approach through monoidal categories is the formal graphical language of string diagrams, which supports visual reasoning about programs and computations. In the present paper, we provide a coalgebraic characterization of monoidal computer. It turns out that the availability of interpreters and specializers, that make a monoidal category into a monoidal computer, is equivalent with the existence of a *universal state space*, that carries a weakly final state machine for any pair of input and output types. Being able to program state machines in monoidal computers allows us to represent Turing machines, to capture their execution, count their steps, as well as, e.g., the memory cells that they use. The coalgebraic view of monoidal computer thus provides a convenient diagrammatic language for studying computability and complexity.Comment: 34 pages, 24 figures; in this version: added the Appendi

    Formal verification of higher-order probabilistic programs

    Full text link
    Probabilistic programming provides a convenient lingua franca for writing succinct and rigorous descriptions of probabilistic models and inference tasks. Several probabilistic programming languages, including Anglican, Church or Hakaru, derive their expressiveness from a powerful combination of continuous distributions, conditioning, and higher-order functions. Although very important for practical applications, these combined features raise fundamental challenges for program semantics and verification. Several recent works offer promising answers to these challenges, but their primary focus is on semantical issues. In this paper, we take a step further and we develop a set of program logics, named PPV, for proving properties of programs written in an expressive probabilistic higher-order language with continuous distributions and operators for conditioning distributions by real-valued functions. Pleasingly, our program logics retain the comfortable reasoning style of informal proofs thanks to carefully selected axiomatizations of key results from probability theory. The versatility of our logics is illustrated through the formal verification of several intricate examples from statistics, probabilistic inference, and machine learning. We further show the expressiveness of our logics by giving sound embeddings of existing logics. In particular, we do this in a parametric way by showing how the semantics idea of (unary and relational) TT-lifting can be internalized in our logics. The soundness of PPV follows by interpreting programs and assertions in quasi-Borel spaces (QBS), a recently proposed variant of Borel spaces with a good structure for interpreting higher order probabilistic programs

    Theory and Practice of Action Semantics

    Get PDF
    Action Semantics is a framework for the formal descriptionof programming languages. Its main advantage over other frameworksis pragmatic: action-semantic descriptions (ASDs) scale up smoothly torealistic programming languages. This is due to the inherent extensibilityand modifiability of ASDs, ensuring that extensions and changes tothe described language require only proportionate changes in its description.(In denotational or operational semantics, adding an unforeseenconstruct to a language may require a reformulation of the entire description.)After sketching the background for the development of action semantics,we summarize the main ideas of the framework, and provide a simpleillustrative example of an ASD. We identify which features of ASDsare crucial for good pragmatics. Then we explain the foundations ofaction semantics, and survey recent advances in its theory and practicalapplications. Finally, we assess the prospects for further developmentand use of action semantics.The action semantics framework was initially developed at the Universityof Aarhus by the present author, in collaboration with David Watt(University of Glasgow). Groups and individuals scattered around fivecontinents have since contributed to its theory and practice
    • …
    corecore