21 research outputs found

    Recursive Polynomial Remainder Sequence and the Nested Subresultants

    Full text link
    We give two new expressions of subresultants, nested subresultant and reduced nested subresultant, for the recursive polynomial remainder sequence (PRS) which has been introduced by the author. The reduced nested subresultant reduces the size of the subresultant matrix drastically compared with the recursive subresultant proposed by the authors before, hence it is much more useful for investigation of the recursive PRS. Finally, we discuss usage of the reduced nested subresultant in approximate algebraic computation, which motivates the present work.Comment: 12 pages. Presented at CASC 2005 (Kalamata, Greece, Septermber 12-16, 2005

    Recursive Polynomial Remainder Sequence and its Subresultants

    Full text link
    We introduce concepts of "recursive polynomial remainder sequence (PRS)" and "recursive subresultant," along with investigation of their properties. A recursive PRS is defined as, if there exists the GCD (greatest common divisor) of initial polynomials, a sequence of PRSs calculated "recursively" for the GCD and its derivative until a constant is derived, and recursive subresultants are defined by determinants representing the coefficients in recursive PRS as functions of coefficients of initial polynomials. We give three different constructions of subresultant matrices for recursive subresultants; while the first one is built-up just with previously defined matrices thus the size of the matrix increases fast as the recursion deepens, the last one reduces the size of the matrix drastically by the Gaussian elimination on the second one which has a "nested" expression, i.e. a Sylvester matrix whose elements are themselves determinants.Comment: 30 pages. Preliminary versions of this paper have been presented at CASC 2003 (arXiv:0806.0478 [math.AC]) and CASC 2005 (arXiv:0806.0488 [math.AC]

    Symbolic-numeric algorithms for univariate polynomials

    Get PDF
    Thesis (Ph. D. in Science)--University of Tsukuba, (B), no. 2485, 2010.3.25 Includes bibliographical referencesNote to the re-typeset version: This is re-typeset version of the original dissertation. While I have maintained the original contents without changing any words and/or formulas in the main body, I have added the following information: 1. Copyright notice of corresponding articles in each chapter; 2. Digital Object Identifiers (DOI) or URLs of references as many as possible.Please note that the number of pages is slightly increased in the present edition from that of the original edition, possibly by changes of page style parameters.200

    Cache-Friendly, Modular and Parallel Schemes For Computing Subresultant Chains

    Get PDF
    The RegularChains library in Maple offers a collection of commands for solving polynomial systems symbolically with taking advantage of the theory of regular chains. The primary goal of this thesis is algorithmic contributions, in particular, to high-performance computational schemes for subresultant chains and underlying routines to extend that of RegularChains in a C/C++ open-source library. Subresultants are one of the most fundamental tools in computer algebra. They are at the core of numerous algorithms including, but not limited to, polynomial GCD computations, polynomial system solving, and symbolic integration. When the subresultant chain of two polynomials is involved in a client procedure, not all polynomials of the chain, or not all coefficients of a given subresultant, may be needed. Based on that observation, we design so-called speculative and caching strategies which yield great performance improvements within our polynomial system solver. Our implementation of these techniques has been highly optimized. We have implemented optimized core arithmetic routines and multithreaded subresultant algorithms for univariate, bivariate and multivariate polynomials. We further examine memory access patterns and data locality for computing subresultants of multivariate polynomials, and study different optimization techniques for the fraction-free LU decomposition algorithm to compute subresultants based on determinant of Bezout matrices. Our code is publicly available at www.bpaslib.org as part of the Basic Polynomial Algebra Subprograms (BPAS) library that is mainly written in C, with concurrency support and user interfaces written in C++

    TR-2012001: Algebraic Algorithms

    Full text link

    The Design and Implementation of a High-Performance Polynomial System Solver

    Get PDF
    This thesis examines the algorithmic and practical challenges of solving systems of polynomial equations. We discuss the design and implementation of triangular decomposition to solve polynomials systems exactly by means of symbolic computation. Incremental triangular decomposition solves one equation from the input list of polynomials at a time. Each step may produce several different components (points, curves, surfaces, etc.) of the solution set. Independent components imply that the solving process may proceed on each component concurrently. This so-called component-level parallelism is a theoretical and practical challenge characterized by irregular parallelism. Parallelism is not an algorithmic property but rather a geometrical property of the particular input system’s solution set. Despite these challenges, we have effectively applied parallel computing to triangular decomposition through the layering and cooperation of many parallel code regions. This parallel computing is supported by our generic object-oriented framework based on the dynamic multithreading paradigm. Meanwhile, the required polynomial algebra is sup- ported by an object-oriented framework for algebraic types which allows type safety and mathematical correctness to be determined at compile-time. Our software is implemented in C/C++ and have extensively tested the implementation for correctness and performance on over 3000 polynomial systems that have arisen in practice. The parallel framework has been re-used in the implementation of Hensel factorization as a parallel pipeline to compute roots of a polynomial with multivariate power series coefficients. Hensel factorization is one step toward computing the non-trivial limit points of quasi-components

    TR-2013009: Algebraic Algorithms

    Full text link

    Bivariate systems and topology of plane curves: algebraic and numerical methods

    Get PDF
    The work presented in this thesis belongs to the domain of non-linear computational geometry in lowdimension. More precisely it focuses on solving bivariate systems and computing the topology of curvesin the plane. When the input is given by polynomials, the natural tools come from computer algebra.Our contributions are algorithms proven efficient in a deterministic or a Las Vegas settings together witha practical efficient software for topology certified drawing of a plane algebraic curve. When the input isnot restricted to be polynomials but given by interval functions, we design algorithms based on certifiednumerical approches using subdivision and interval arithmetic. The input is then required to fulfill somegeneric assumptions and our algorithms are certified in the sense that they terminate if and only if theassumptions are satisfied.Le travail présenté dans cette thèse appartient au domaine de la géométrie computationnelle non linéaireen petite dimension. Plus précisément, il se concentre sur la résolution de systèmes bivariés et le calcul dela topologie des courbes dans le plan. Lorsque l’entrée est donnée par des polynômes, les outils naturelsproviennent du calcul formel. Nos contributions sont des algorithmes dont l’efficacité a été prouvée dansun cadre déterministe ou Las Vegas, ainsi qu’un logiciel efficace pour le dessin certifié de la topologied’une courbe algébrique plane. Lorsque les données d’entrée ne sont pas limitées aux polynômes maissont données par des fonctions d’intervalles, nous concevons des algorithmes basés sur des approchesnumériques certifiées utilisant la subdivision et l’arithmétique d’intervalles. L’entrée doit alors satisfairecertaines hypothèses génériques et nos algorithmes sont certifiés dans le sens où ils se terminent si etseulement si les hypothèses sont satisfaites
    corecore